Cargando…
Norepinephrine-functionalised nanoflower-like organic silica as a new adsorbent for effective Pb(II) removal from aqueous solutions
In order to remove Pb(II) ions efficiently from aqueous solutions, a new effective adsorbent of norepinephrine-functionalised nanoflower-like organic silica (NE-NFOS) was synthesised by a biomimetic method. Biomimetic functionalization with norepinephrine has the advantages of environment-friendly a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6342944/ https://www.ncbi.nlm.nih.gov/pubmed/30670757 http://dx.doi.org/10.1038/s41598-018-36644-1 |
Sumario: | In order to remove Pb(II) ions efficiently from aqueous solutions, a new effective adsorbent of norepinephrine-functionalised nanoflower-like organic silica (NE-NFOS) was synthesised by a biomimetic method. Biomimetic functionalization with norepinephrine has the advantages of environment-friendly and easy operation. Characterization of the NE-NFOS using scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller method, and Fourier-transform infrared spectroscopy revealed that the NFOS was modified successfully by norepinephrine. Furthermore, the influences of different parameters including adsorption kinetics, solution pH, adsorption isotherms, concentrations of Na(+), K(+), Ca(2+), and Mg(2+), desorption and reusability were studied. The adsorption experiments showed that the capacity of NE-NFOS to adsorb Pb(II) ions improved greatly after functionalisation and adsorption equilibrium was attained within 90 min at a pH of 6.0. The Na(+), K(+), Ca(2+), and Mg(2+) concentrations had little influence on the adsorption, and after recycling for five times, the Pb(II) ion removal efficiency of the adsorbent was more than 79% of its initial value. Thus, it was demonstrated that the NE-NFOS with excellent adsorption performance could be a suitable adsorbent for Pb(II) ions removal in practical applications. |
---|