Cargando…

Engineering Clostridial Aldehyde/Alcohol Dehydrogenase for Selective Butanol Production

Butanol production by Clostridium acetobutylicum is accompanied by coproduction of acetone and ethanol, which reduces the yield of butanol and increases the production cost. Here, we report development of several clostridial aldehyde/alcohol dehydrogenase (AAD) variants showing increased butanol sel...

Descripción completa

Detalles Bibliográficos
Autores principales: Cho, Changhee, Hong, Seungpyo, Moon, Hyeon Gi, Jang, Yu-Sin, Kim, Dongsup, Lee, Sang Yup
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6343042/
https://www.ncbi.nlm.nih.gov/pubmed/30670620
http://dx.doi.org/10.1128/mBio.02683-18
Descripción
Sumario:Butanol production by Clostridium acetobutylicum is accompanied by coproduction of acetone and ethanol, which reduces the yield of butanol and increases the production cost. Here, we report development of several clostridial aldehyde/alcohol dehydrogenase (AAD) variants showing increased butanol selectivity by a series of design and analysis procedures, including random mutagenesis, substrate specificity feature analysis, and structure-based butanol selectivity design. The butanol/ethanol ratios (B/E ratios) were dramatically increased to 17.47 and 15.91 g butanol/g ethanol for AAD(F716L) and AAD(N655H), respectively, which are 5.8-fold and 5.3-fold higher than the ratios obtained with the wild-type AAD. The much-increased B/E ratio obtained was due to the dramatic reduction in ethanol production (0.59 ± 0.01 g/liter) that resulted from engineering the substrate binding chamber and the active site of AAD. This protein design strategy can be applied generally for engineering enzymes to alter substrate selectivity.