Cargando…

All Hierarchical Core–Shell Heterostructures as Novel Binder‐Free Electrode Materials for Ultrahigh‐Energy‐Density Wearable Asymmetric Supercapacitors

High‐performance fiber‐shaped energy‐storage devices are indispensable for the development of portable and wearable electronics. Composite pseudocapacitance materials with hierarchical core–shell heterostructures hold great potential for the fabrication of high‐performance asymmetric supercapacitors...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Qiulong, Zhang, Qichong, Sun, Juan, Liu, Chenglong, Guo, Jiabin, He, Bing, Zhou, Zhenyu, Man, Ping, Li, Chaowei, Xie, Liyan, Yao, Yagang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6343089/
https://www.ncbi.nlm.nih.gov/pubmed/30693184
http://dx.doi.org/10.1002/advs.201801379
_version_ 1783389218750332928
author Li, Qiulong
Zhang, Qichong
Sun, Juan
Liu, Chenglong
Guo, Jiabin
He, Bing
Zhou, Zhenyu
Man, Ping
Li, Chaowei
Xie, Liyan
Yao, Yagang
author_facet Li, Qiulong
Zhang, Qichong
Sun, Juan
Liu, Chenglong
Guo, Jiabin
He, Bing
Zhou, Zhenyu
Man, Ping
Li, Chaowei
Xie, Liyan
Yao, Yagang
author_sort Li, Qiulong
collection PubMed
description High‐performance fiber‐shaped energy‐storage devices are indispensable for the development of portable and wearable electronics. Composite pseudocapacitance materials with hierarchical core–shell heterostructures hold great potential for the fabrication of high‐performance asymmetric supercapacitors (ASCs). However, few reports concerning the assembly of fiber‐shaped ASCs (FASCs) using cathode/anode materials with all hierarchical core–shell heterostructures are available. Here, cobalt‐nickel‐oxide@nickel hydroxide nanowire arrays (NWAs) and titanium nitride@vanadium nitride NWAs are constructed skillfully with all hierarchical core–shell heterostructures directly grown on carbon nanotube fibers and are shown to exhibit ultrahigh capacity and specific capacitance, respectively. The specific features and outstanding electrochemical performances of the electrode materials are exploited to fabricate an FASC device with a maximum working voltage of 1.6 V, and this device exhibits a high specific capacitance of 109.4 F cm(−3) (328.3 mF cm(−2)) and excellent energy density of 36.0 mWh cm(−3) (108.1 µWh cm(−2)). This work therefore provides a strategy for constructing all hierarchical core–shell heterostructured cathode and anode materials with ultrahigh capacity for the fabrication of next‐generation wearable energy‐storage devices.
format Online
Article
Text
id pubmed-6343089
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-63430892019-01-28 All Hierarchical Core–Shell Heterostructures as Novel Binder‐Free Electrode Materials for Ultrahigh‐Energy‐Density Wearable Asymmetric Supercapacitors Li, Qiulong Zhang, Qichong Sun, Juan Liu, Chenglong Guo, Jiabin He, Bing Zhou, Zhenyu Man, Ping Li, Chaowei Xie, Liyan Yao, Yagang Adv Sci (Weinh) Full Papers High‐performance fiber‐shaped energy‐storage devices are indispensable for the development of portable and wearable electronics. Composite pseudocapacitance materials with hierarchical core–shell heterostructures hold great potential for the fabrication of high‐performance asymmetric supercapacitors (ASCs). However, few reports concerning the assembly of fiber‐shaped ASCs (FASCs) using cathode/anode materials with all hierarchical core–shell heterostructures are available. Here, cobalt‐nickel‐oxide@nickel hydroxide nanowire arrays (NWAs) and titanium nitride@vanadium nitride NWAs are constructed skillfully with all hierarchical core–shell heterostructures directly grown on carbon nanotube fibers and are shown to exhibit ultrahigh capacity and specific capacitance, respectively. The specific features and outstanding electrochemical performances of the electrode materials are exploited to fabricate an FASC device with a maximum working voltage of 1.6 V, and this device exhibits a high specific capacitance of 109.4 F cm(−3) (328.3 mF cm(−2)) and excellent energy density of 36.0 mWh cm(−3) (108.1 µWh cm(−2)). This work therefore provides a strategy for constructing all hierarchical core–shell heterostructured cathode and anode materials with ultrahigh capacity for the fabrication of next‐generation wearable energy‐storage devices. John Wiley and Sons Inc. 2018-11-12 /pmc/articles/PMC6343089/ /pubmed/30693184 http://dx.doi.org/10.1002/advs.201801379 Text en © 2018 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Full Papers
Li, Qiulong
Zhang, Qichong
Sun, Juan
Liu, Chenglong
Guo, Jiabin
He, Bing
Zhou, Zhenyu
Man, Ping
Li, Chaowei
Xie, Liyan
Yao, Yagang
All Hierarchical Core–Shell Heterostructures as Novel Binder‐Free Electrode Materials for Ultrahigh‐Energy‐Density Wearable Asymmetric Supercapacitors
title All Hierarchical Core–Shell Heterostructures as Novel Binder‐Free Electrode Materials for Ultrahigh‐Energy‐Density Wearable Asymmetric Supercapacitors
title_full All Hierarchical Core–Shell Heterostructures as Novel Binder‐Free Electrode Materials for Ultrahigh‐Energy‐Density Wearable Asymmetric Supercapacitors
title_fullStr All Hierarchical Core–Shell Heterostructures as Novel Binder‐Free Electrode Materials for Ultrahigh‐Energy‐Density Wearable Asymmetric Supercapacitors
title_full_unstemmed All Hierarchical Core–Shell Heterostructures as Novel Binder‐Free Electrode Materials for Ultrahigh‐Energy‐Density Wearable Asymmetric Supercapacitors
title_short All Hierarchical Core–Shell Heterostructures as Novel Binder‐Free Electrode Materials for Ultrahigh‐Energy‐Density Wearable Asymmetric Supercapacitors
title_sort all hierarchical core–shell heterostructures as novel binder‐free electrode materials for ultrahigh‐energy‐density wearable asymmetric supercapacitors
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6343089/
https://www.ncbi.nlm.nih.gov/pubmed/30693184
http://dx.doi.org/10.1002/advs.201801379
work_keys_str_mv AT liqiulong allhierarchicalcoreshellheterostructuresasnovelbinderfreeelectrodematerialsforultrahighenergydensitywearableasymmetricsupercapacitors
AT zhangqichong allhierarchicalcoreshellheterostructuresasnovelbinderfreeelectrodematerialsforultrahighenergydensitywearableasymmetricsupercapacitors
AT sunjuan allhierarchicalcoreshellheterostructuresasnovelbinderfreeelectrodematerialsforultrahighenergydensitywearableasymmetricsupercapacitors
AT liuchenglong allhierarchicalcoreshellheterostructuresasnovelbinderfreeelectrodematerialsforultrahighenergydensitywearableasymmetricsupercapacitors
AT guojiabin allhierarchicalcoreshellheterostructuresasnovelbinderfreeelectrodematerialsforultrahighenergydensitywearableasymmetricsupercapacitors
AT hebing allhierarchicalcoreshellheterostructuresasnovelbinderfreeelectrodematerialsforultrahighenergydensitywearableasymmetricsupercapacitors
AT zhouzhenyu allhierarchicalcoreshellheterostructuresasnovelbinderfreeelectrodematerialsforultrahighenergydensitywearableasymmetricsupercapacitors
AT manping allhierarchicalcoreshellheterostructuresasnovelbinderfreeelectrodematerialsforultrahighenergydensitywearableasymmetricsupercapacitors
AT lichaowei allhierarchicalcoreshellheterostructuresasnovelbinderfreeelectrodematerialsforultrahighenergydensitywearableasymmetricsupercapacitors
AT xieliyan allhierarchicalcoreshellheterostructuresasnovelbinderfreeelectrodematerialsforultrahighenergydensitywearableasymmetricsupercapacitors
AT yaoyagang allhierarchicalcoreshellheterostructuresasnovelbinderfreeelectrodematerialsforultrahighenergydensitywearableasymmetricsupercapacitors