Cargando…
All Hierarchical Core–Shell Heterostructures as Novel Binder‐Free Electrode Materials for Ultrahigh‐Energy‐Density Wearable Asymmetric Supercapacitors
High‐performance fiber‐shaped energy‐storage devices are indispensable for the development of portable and wearable electronics. Composite pseudocapacitance materials with hierarchical core–shell heterostructures hold great potential for the fabrication of high‐performance asymmetric supercapacitors...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6343089/ https://www.ncbi.nlm.nih.gov/pubmed/30693184 http://dx.doi.org/10.1002/advs.201801379 |
_version_ | 1783389218750332928 |
---|---|
author | Li, Qiulong Zhang, Qichong Sun, Juan Liu, Chenglong Guo, Jiabin He, Bing Zhou, Zhenyu Man, Ping Li, Chaowei Xie, Liyan Yao, Yagang |
author_facet | Li, Qiulong Zhang, Qichong Sun, Juan Liu, Chenglong Guo, Jiabin He, Bing Zhou, Zhenyu Man, Ping Li, Chaowei Xie, Liyan Yao, Yagang |
author_sort | Li, Qiulong |
collection | PubMed |
description | High‐performance fiber‐shaped energy‐storage devices are indispensable for the development of portable and wearable electronics. Composite pseudocapacitance materials with hierarchical core–shell heterostructures hold great potential for the fabrication of high‐performance asymmetric supercapacitors (ASCs). However, few reports concerning the assembly of fiber‐shaped ASCs (FASCs) using cathode/anode materials with all hierarchical core–shell heterostructures are available. Here, cobalt‐nickel‐oxide@nickel hydroxide nanowire arrays (NWAs) and titanium nitride@vanadium nitride NWAs are constructed skillfully with all hierarchical core–shell heterostructures directly grown on carbon nanotube fibers and are shown to exhibit ultrahigh capacity and specific capacitance, respectively. The specific features and outstanding electrochemical performances of the electrode materials are exploited to fabricate an FASC device with a maximum working voltage of 1.6 V, and this device exhibits a high specific capacitance of 109.4 F cm(−3) (328.3 mF cm(−2)) and excellent energy density of 36.0 mWh cm(−3) (108.1 µWh cm(−2)). This work therefore provides a strategy for constructing all hierarchical core–shell heterostructured cathode and anode materials with ultrahigh capacity for the fabrication of next‐generation wearable energy‐storage devices. |
format | Online Article Text |
id | pubmed-6343089 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-63430892019-01-28 All Hierarchical Core–Shell Heterostructures as Novel Binder‐Free Electrode Materials for Ultrahigh‐Energy‐Density Wearable Asymmetric Supercapacitors Li, Qiulong Zhang, Qichong Sun, Juan Liu, Chenglong Guo, Jiabin He, Bing Zhou, Zhenyu Man, Ping Li, Chaowei Xie, Liyan Yao, Yagang Adv Sci (Weinh) Full Papers High‐performance fiber‐shaped energy‐storage devices are indispensable for the development of portable and wearable electronics. Composite pseudocapacitance materials with hierarchical core–shell heterostructures hold great potential for the fabrication of high‐performance asymmetric supercapacitors (ASCs). However, few reports concerning the assembly of fiber‐shaped ASCs (FASCs) using cathode/anode materials with all hierarchical core–shell heterostructures are available. Here, cobalt‐nickel‐oxide@nickel hydroxide nanowire arrays (NWAs) and titanium nitride@vanadium nitride NWAs are constructed skillfully with all hierarchical core–shell heterostructures directly grown on carbon nanotube fibers and are shown to exhibit ultrahigh capacity and specific capacitance, respectively. The specific features and outstanding electrochemical performances of the electrode materials are exploited to fabricate an FASC device with a maximum working voltage of 1.6 V, and this device exhibits a high specific capacitance of 109.4 F cm(−3) (328.3 mF cm(−2)) and excellent energy density of 36.0 mWh cm(−3) (108.1 µWh cm(−2)). This work therefore provides a strategy for constructing all hierarchical core–shell heterostructured cathode and anode materials with ultrahigh capacity for the fabrication of next‐generation wearable energy‐storage devices. John Wiley and Sons Inc. 2018-11-12 /pmc/articles/PMC6343089/ /pubmed/30693184 http://dx.doi.org/10.1002/advs.201801379 Text en © 2018 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Full Papers Li, Qiulong Zhang, Qichong Sun, Juan Liu, Chenglong Guo, Jiabin He, Bing Zhou, Zhenyu Man, Ping Li, Chaowei Xie, Liyan Yao, Yagang All Hierarchical Core–Shell Heterostructures as Novel Binder‐Free Electrode Materials for Ultrahigh‐Energy‐Density Wearable Asymmetric Supercapacitors |
title | All Hierarchical Core–Shell Heterostructures as Novel Binder‐Free Electrode Materials for Ultrahigh‐Energy‐Density Wearable Asymmetric Supercapacitors |
title_full | All Hierarchical Core–Shell Heterostructures as Novel Binder‐Free Electrode Materials for Ultrahigh‐Energy‐Density Wearable Asymmetric Supercapacitors |
title_fullStr | All Hierarchical Core–Shell Heterostructures as Novel Binder‐Free Electrode Materials for Ultrahigh‐Energy‐Density Wearable Asymmetric Supercapacitors |
title_full_unstemmed | All Hierarchical Core–Shell Heterostructures as Novel Binder‐Free Electrode Materials for Ultrahigh‐Energy‐Density Wearable Asymmetric Supercapacitors |
title_short | All Hierarchical Core–Shell Heterostructures as Novel Binder‐Free Electrode Materials for Ultrahigh‐Energy‐Density Wearable Asymmetric Supercapacitors |
title_sort | all hierarchical core–shell heterostructures as novel binder‐free electrode materials for ultrahigh‐energy‐density wearable asymmetric supercapacitors |
topic | Full Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6343089/ https://www.ncbi.nlm.nih.gov/pubmed/30693184 http://dx.doi.org/10.1002/advs.201801379 |
work_keys_str_mv | AT liqiulong allhierarchicalcoreshellheterostructuresasnovelbinderfreeelectrodematerialsforultrahighenergydensitywearableasymmetricsupercapacitors AT zhangqichong allhierarchicalcoreshellheterostructuresasnovelbinderfreeelectrodematerialsforultrahighenergydensitywearableasymmetricsupercapacitors AT sunjuan allhierarchicalcoreshellheterostructuresasnovelbinderfreeelectrodematerialsforultrahighenergydensitywearableasymmetricsupercapacitors AT liuchenglong allhierarchicalcoreshellheterostructuresasnovelbinderfreeelectrodematerialsforultrahighenergydensitywearableasymmetricsupercapacitors AT guojiabin allhierarchicalcoreshellheterostructuresasnovelbinderfreeelectrodematerialsforultrahighenergydensitywearableasymmetricsupercapacitors AT hebing allhierarchicalcoreshellheterostructuresasnovelbinderfreeelectrodematerialsforultrahighenergydensitywearableasymmetricsupercapacitors AT zhouzhenyu allhierarchicalcoreshellheterostructuresasnovelbinderfreeelectrodematerialsforultrahighenergydensitywearableasymmetricsupercapacitors AT manping allhierarchicalcoreshellheterostructuresasnovelbinderfreeelectrodematerialsforultrahighenergydensitywearableasymmetricsupercapacitors AT lichaowei allhierarchicalcoreshellheterostructuresasnovelbinderfreeelectrodematerialsforultrahighenergydensitywearableasymmetricsupercapacitors AT xieliyan allhierarchicalcoreshellheterostructuresasnovelbinderfreeelectrodematerialsforultrahighenergydensitywearableasymmetricsupercapacitors AT yaoyagang allhierarchicalcoreshellheterostructuresasnovelbinderfreeelectrodematerialsforultrahighenergydensitywearableasymmetricsupercapacitors |