Cargando…
Detection of pulmonary ground-glass opacity based on deep learning computer artificial intelligence
BACKGROUND: A deep learning computer artificial intelligence system is helpful for early identification of ground glass opacities (GGOs). METHODS: Images from the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) database were used in AlexNet and GoogLeNet to detect p...
Autores principales: | Ye, Wenjing, Gu, Wen, Guo, Xuejun, Yi, Ping, Meng, Yishuang, Han, Fengfeng, Yu, Lingwei, Chen, Yi, Zhang, Guorui, Wang, Xueting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6343356/ https://www.ncbi.nlm.nih.gov/pubmed/30670024 http://dx.doi.org/10.1186/s12938-019-0627-4 |
Ejemplares similares
-
Advances in intelligent diagnosis methods for pulmonary ground-glass opacity nodules
por: Yang, Jing, et al.
Publicado: (2018) -
Ground-glass opacities accompanied by pulmonary cysts
por: Marchiori, Edson, et al.
Publicado: (2020) -
Lymphadenectomy is Unnecessary for Pure Ground-Glass Opacity Pulmonary Nodules
por: Lin, Yi-Han, et al.
Publicado: (2020) -
Clinical and radiomic factors for predicting invasiveness in pulmonary ground‑glass opacity
por: Dang, Yutao, et al.
Publicado: (2022) -
Malignant Pure Pulmonary Ground-Glass Opacity Nodules: Prognostic Implications
por: Park, Jong Heon, et al.
Publicado: (2009)