Cargando…
Fish under pressure: Examining behavioural responses of Iberian barbel under simulated hydropeaking with instream structures
Hydropeaking is the rapid change in the water flow downstream of a hydropower plant, driven by changes in daily electricity demand. These fluctuations may produce negative effects in freshwater fish. To minimize these impacts, previous studies have proposed habitat enhancement structures as potentia...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6343894/ https://www.ncbi.nlm.nih.gov/pubmed/30673767 http://dx.doi.org/10.1371/journal.pone.0211115 |
_version_ | 1783389342095376384 |
---|---|
author | Costa, M. J. Fuentes-Pérez, J. F. Boavida, I. Tuhtan, J. A. Pinheiro, A. N. |
author_facet | Costa, M. J. Fuentes-Pérez, J. F. Boavida, I. Tuhtan, J. A. Pinheiro, A. N. |
author_sort | Costa, M. J. |
collection | PubMed |
description | Hydropeaking is the rapid change in the water flow downstream of a hydropower plant, driven by changes in daily electricity demand. These fluctuations may produce negative effects in freshwater fish. To minimize these impacts, previous studies have proposed habitat enhancement structures as potential mitigation measures for salmonids. However, the recommendation of these mitigation measures for cyprinids remains scarce and their effects unknown. In this study, the effects of potential habitat mitigation structures under simulated hydropeaking and base-flow conditions are examined for Iberian barbel (Luciobarbus bocagei) in an indoor flume. Solid triangular pyramids and v-shaped structures were evaluated as potential flow-refuging areas and compared with a configuration without structures. A novel, interdisciplinary approach is applied to investigate individual and group responses to rapidly changing flows, by assessing physiological (glucose and lactate), movement behaviour (structure use, sprints and drifts) and the pressure distribution using a fish-inspired artificial lateral line flow sensor. The major findings of this study are four-fold: 1) Under hydropeaking conditions, the v-shaped structures triggered a lactate response and stimulated individual structure use, whereas solid structures did not elicit physiological adjustments and favoured individual and group structure use. Overall, both solid structures and their absence stimulated sprints and drifts. 2) The hydrodynamic conditions created in hydropeaking did not always reflect increased physiological responses or swimming activity. 3) Each event-structure combination resulted in unique hydrodynamic conditions which were reflected in the different fish responses. 4) The most relevant flow variable measured was the pressure asymmetry, which is caused by the vortex size and shedding frequency of the structures. Considering the non-uniform nature of hydropeaking events, and the observation that the fish responded differently to specific flow event-structure combinations, a diverse set of instream structures should be considered for habitat-based hydropeaking mitigation measures for Iberian barbel. |
format | Online Article Text |
id | pubmed-6343894 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-63438942019-02-02 Fish under pressure: Examining behavioural responses of Iberian barbel under simulated hydropeaking with instream structures Costa, M. J. Fuentes-Pérez, J. F. Boavida, I. Tuhtan, J. A. Pinheiro, A. N. PLoS One Research Article Hydropeaking is the rapid change in the water flow downstream of a hydropower plant, driven by changes in daily electricity demand. These fluctuations may produce negative effects in freshwater fish. To minimize these impacts, previous studies have proposed habitat enhancement structures as potential mitigation measures for salmonids. However, the recommendation of these mitigation measures for cyprinids remains scarce and their effects unknown. In this study, the effects of potential habitat mitigation structures under simulated hydropeaking and base-flow conditions are examined for Iberian barbel (Luciobarbus bocagei) in an indoor flume. Solid triangular pyramids and v-shaped structures were evaluated as potential flow-refuging areas and compared with a configuration without structures. A novel, interdisciplinary approach is applied to investigate individual and group responses to rapidly changing flows, by assessing physiological (glucose and lactate), movement behaviour (structure use, sprints and drifts) and the pressure distribution using a fish-inspired artificial lateral line flow sensor. The major findings of this study are four-fold: 1) Under hydropeaking conditions, the v-shaped structures triggered a lactate response and stimulated individual structure use, whereas solid structures did not elicit physiological adjustments and favoured individual and group structure use. Overall, both solid structures and their absence stimulated sprints and drifts. 2) The hydrodynamic conditions created in hydropeaking did not always reflect increased physiological responses or swimming activity. 3) Each event-structure combination resulted in unique hydrodynamic conditions which were reflected in the different fish responses. 4) The most relevant flow variable measured was the pressure asymmetry, which is caused by the vortex size and shedding frequency of the structures. Considering the non-uniform nature of hydropeaking events, and the observation that the fish responded differently to specific flow event-structure combinations, a diverse set of instream structures should be considered for habitat-based hydropeaking mitigation measures for Iberian barbel. Public Library of Science 2019-01-23 /pmc/articles/PMC6343894/ /pubmed/30673767 http://dx.doi.org/10.1371/journal.pone.0211115 Text en © 2019 Costa et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Costa, M. J. Fuentes-Pérez, J. F. Boavida, I. Tuhtan, J. A. Pinheiro, A. N. Fish under pressure: Examining behavioural responses of Iberian barbel under simulated hydropeaking with instream structures |
title | Fish under pressure: Examining behavioural responses of Iberian barbel under simulated hydropeaking with instream structures |
title_full | Fish under pressure: Examining behavioural responses of Iberian barbel under simulated hydropeaking with instream structures |
title_fullStr | Fish under pressure: Examining behavioural responses of Iberian barbel under simulated hydropeaking with instream structures |
title_full_unstemmed | Fish under pressure: Examining behavioural responses of Iberian barbel under simulated hydropeaking with instream structures |
title_short | Fish under pressure: Examining behavioural responses of Iberian barbel under simulated hydropeaking with instream structures |
title_sort | fish under pressure: examining behavioural responses of iberian barbel under simulated hydropeaking with instream structures |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6343894/ https://www.ncbi.nlm.nih.gov/pubmed/30673767 http://dx.doi.org/10.1371/journal.pone.0211115 |
work_keys_str_mv | AT costamj fishunderpressureexaminingbehaviouralresponsesofiberianbarbelundersimulatedhydropeakingwithinstreamstructures AT fuentesperezjf fishunderpressureexaminingbehaviouralresponsesofiberianbarbelundersimulatedhydropeakingwithinstreamstructures AT boavidai fishunderpressureexaminingbehaviouralresponsesofiberianbarbelundersimulatedhydropeakingwithinstreamstructures AT tuhtanja fishunderpressureexaminingbehaviouralresponsesofiberianbarbelundersimulatedhydropeakingwithinstreamstructures AT pinheiroan fishunderpressureexaminingbehaviouralresponsesofiberianbarbelundersimulatedhydropeakingwithinstreamstructures |