Cargando…

Predicting ecosystem components in the Gulf of Mexico and their responses to climate variability with a dynamic Bayesian network model

The Gulf of Mexico is an ecologically and economically important marine ecosystem that is affected by a variety of natural and anthropogenic pressures. These complex and interacting pressures, together with the dynamic environment of the Gulf, present challenges for the effective management of its r...

Descripción completa

Detalles Bibliográficos
Autores principales: Trifonova, Neda, Karnauskas, Mandy, Kelble, Christopher
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6344104/
https://www.ncbi.nlm.nih.gov/pubmed/30673705
http://dx.doi.org/10.1371/journal.pone.0209257
_version_ 1783389380492132352
author Trifonova, Neda
Karnauskas, Mandy
Kelble, Christopher
author_facet Trifonova, Neda
Karnauskas, Mandy
Kelble, Christopher
author_sort Trifonova, Neda
collection PubMed
description The Gulf of Mexico is an ecologically and economically important marine ecosystem that is affected by a variety of natural and anthropogenic pressures. These complex and interacting pressures, together with the dynamic environment of the Gulf, present challenges for the effective management of its resources. The recent adoption of Bayesian networks to ecology allows for the discovery and quantification of complex interactions from data after making only a few assumptions about observations of the system. In this study, we apply Bayesian network models, with different levels of structural complexity and a varying number of hidden variables to account for uncertainty when modeling ecosystem dynamics. From these models, we predict focal ecosystem components within the Gulf of Mexico. The predictive ability of the models varied with their structure. The model that performed best was parameterized through data-driven learning techniques and accounted for multiple ecosystem components’ associations and their interactions with human and natural pressures over time. Then, we altered sea surface temperature in the best performing model to explore the response of different ecosystem components to increased temperature. The magnitude and even direction of predicted responses varied by ecosystem components due to heterogeneity in driving factors and their spatial overlap. Our findings suggest that due to varying components’ sensitivity to drivers, changes in temperature will potentially lead to trade-offs in terms of population productivity. We were able to discover meaningful interactions between ecosystem components and their environment and show how sensitive these relationships are to climate perturbations, which increases our understanding of the potential future response of the system to increasing temperature. Our findings demonstrate that accounting for additional sources of variation, by incorporating multiple interactions and pressures in the model layout, has the potential for gaining deeper insights into the structure and dynamics of ecosystems.
format Online
Article
Text
id pubmed-6344104
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-63441042019-02-02 Predicting ecosystem components in the Gulf of Mexico and their responses to climate variability with a dynamic Bayesian network model Trifonova, Neda Karnauskas, Mandy Kelble, Christopher PLoS One Research Article The Gulf of Mexico is an ecologically and economically important marine ecosystem that is affected by a variety of natural and anthropogenic pressures. These complex and interacting pressures, together with the dynamic environment of the Gulf, present challenges for the effective management of its resources. The recent adoption of Bayesian networks to ecology allows for the discovery and quantification of complex interactions from data after making only a few assumptions about observations of the system. In this study, we apply Bayesian network models, with different levels of structural complexity and a varying number of hidden variables to account for uncertainty when modeling ecosystem dynamics. From these models, we predict focal ecosystem components within the Gulf of Mexico. The predictive ability of the models varied with their structure. The model that performed best was parameterized through data-driven learning techniques and accounted for multiple ecosystem components’ associations and their interactions with human and natural pressures over time. Then, we altered sea surface temperature in the best performing model to explore the response of different ecosystem components to increased temperature. The magnitude and even direction of predicted responses varied by ecosystem components due to heterogeneity in driving factors and their spatial overlap. Our findings suggest that due to varying components’ sensitivity to drivers, changes in temperature will potentially lead to trade-offs in terms of population productivity. We were able to discover meaningful interactions between ecosystem components and their environment and show how sensitive these relationships are to climate perturbations, which increases our understanding of the potential future response of the system to increasing temperature. Our findings demonstrate that accounting for additional sources of variation, by incorporating multiple interactions and pressures in the model layout, has the potential for gaining deeper insights into the structure and dynamics of ecosystems. Public Library of Science 2019-01-23 /pmc/articles/PMC6344104/ /pubmed/30673705 http://dx.doi.org/10.1371/journal.pone.0209257 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication.
spellingShingle Research Article
Trifonova, Neda
Karnauskas, Mandy
Kelble, Christopher
Predicting ecosystem components in the Gulf of Mexico and their responses to climate variability with a dynamic Bayesian network model
title Predicting ecosystem components in the Gulf of Mexico and their responses to climate variability with a dynamic Bayesian network model
title_full Predicting ecosystem components in the Gulf of Mexico and their responses to climate variability with a dynamic Bayesian network model
title_fullStr Predicting ecosystem components in the Gulf of Mexico and their responses to climate variability with a dynamic Bayesian network model
title_full_unstemmed Predicting ecosystem components in the Gulf of Mexico and their responses to climate variability with a dynamic Bayesian network model
title_short Predicting ecosystem components in the Gulf of Mexico and their responses to climate variability with a dynamic Bayesian network model
title_sort predicting ecosystem components in the gulf of mexico and their responses to climate variability with a dynamic bayesian network model
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6344104/
https://www.ncbi.nlm.nih.gov/pubmed/30673705
http://dx.doi.org/10.1371/journal.pone.0209257
work_keys_str_mv AT trifonovaneda predictingecosystemcomponentsinthegulfofmexicoandtheirresponsestoclimatevariabilitywithadynamicbayesiannetworkmodel
AT karnauskasmandy predictingecosystemcomponentsinthegulfofmexicoandtheirresponsestoclimatevariabilitywithadynamicbayesiannetworkmodel
AT kelblechristopher predictingecosystemcomponentsinthegulfofmexicoandtheirresponsestoclimatevariabilitywithadynamicbayesiannetworkmodel