Cargando…

Alveolar proteins stabilize cortical microtubules in Toxoplasma gondii

Single-celled protists use elaborate cytoskeletal structures, including arrays of microtubules at the cell periphery, to maintain polarity and rigidity. The obligate intracellular parasite Toxoplasma gondii has unusually stable cortical microtubules beneath the alveoli, a network of flattened membra...

Descripción completa

Detalles Bibliográficos
Autores principales: Harding, Clare R., Gow, Matthew, Kang, Joon Ho, Shortt, Emily, Manalis, Scott R., Meissner, Markus, Lourido, Sebastian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6344517/
https://www.ncbi.nlm.nih.gov/pubmed/30674885
http://dx.doi.org/10.1038/s41467-019-08318-7
_version_ 1783389441886257152
author Harding, Clare R.
Gow, Matthew
Kang, Joon Ho
Shortt, Emily
Manalis, Scott R.
Meissner, Markus
Lourido, Sebastian
author_facet Harding, Clare R.
Gow, Matthew
Kang, Joon Ho
Shortt, Emily
Manalis, Scott R.
Meissner, Markus
Lourido, Sebastian
author_sort Harding, Clare R.
collection PubMed
description Single-celled protists use elaborate cytoskeletal structures, including arrays of microtubules at the cell periphery, to maintain polarity and rigidity. The obligate intracellular parasite Toxoplasma gondii has unusually stable cortical microtubules beneath the alveoli, a network of flattened membrane vesicles that subtends the plasmalemma. However, anchoring of microtubules along alveolar membranes is not understood. Here, we show that GAPM1a, an integral membrane protein of the alveoli, plays a role in maintaining microtubule stability. Degradation of GAPM1a causes cortical microtubule disorganisation and subsequent depolymerisation. These changes in the cytoskeleton lead to parasites becoming shorter and rounder, which is accompanied by a decrease in cellular volume. Extended GAPM1a depletion leads to severe defects in division, reminiscent of the effect of disrupting other alveolar proteins. We suggest that GAPM proteins link the cortical microtubules to the alveoli and are required to maintain the shape and rigidity of apicomplexan zoites.
format Online
Article
Text
id pubmed-6344517
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-63445172019-01-25 Alveolar proteins stabilize cortical microtubules in Toxoplasma gondii Harding, Clare R. Gow, Matthew Kang, Joon Ho Shortt, Emily Manalis, Scott R. Meissner, Markus Lourido, Sebastian Nat Commun Article Single-celled protists use elaborate cytoskeletal structures, including arrays of microtubules at the cell periphery, to maintain polarity and rigidity. The obligate intracellular parasite Toxoplasma gondii has unusually stable cortical microtubules beneath the alveoli, a network of flattened membrane vesicles that subtends the plasmalemma. However, anchoring of microtubules along alveolar membranes is not understood. Here, we show that GAPM1a, an integral membrane protein of the alveoli, plays a role in maintaining microtubule stability. Degradation of GAPM1a causes cortical microtubule disorganisation and subsequent depolymerisation. These changes in the cytoskeleton lead to parasites becoming shorter and rounder, which is accompanied by a decrease in cellular volume. Extended GAPM1a depletion leads to severe defects in division, reminiscent of the effect of disrupting other alveolar proteins. We suggest that GAPM proteins link the cortical microtubules to the alveoli and are required to maintain the shape and rigidity of apicomplexan zoites. Nature Publishing Group UK 2019-01-23 /pmc/articles/PMC6344517/ /pubmed/30674885 http://dx.doi.org/10.1038/s41467-019-08318-7 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Harding, Clare R.
Gow, Matthew
Kang, Joon Ho
Shortt, Emily
Manalis, Scott R.
Meissner, Markus
Lourido, Sebastian
Alveolar proteins stabilize cortical microtubules in Toxoplasma gondii
title Alveolar proteins stabilize cortical microtubules in Toxoplasma gondii
title_full Alveolar proteins stabilize cortical microtubules in Toxoplasma gondii
title_fullStr Alveolar proteins stabilize cortical microtubules in Toxoplasma gondii
title_full_unstemmed Alveolar proteins stabilize cortical microtubules in Toxoplasma gondii
title_short Alveolar proteins stabilize cortical microtubules in Toxoplasma gondii
title_sort alveolar proteins stabilize cortical microtubules in toxoplasma gondii
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6344517/
https://www.ncbi.nlm.nih.gov/pubmed/30674885
http://dx.doi.org/10.1038/s41467-019-08318-7
work_keys_str_mv AT hardingclarer alveolarproteinsstabilizecorticalmicrotubulesintoxoplasmagondii
AT gowmatthew alveolarproteinsstabilizecorticalmicrotubulesintoxoplasmagondii
AT kangjoonho alveolarproteinsstabilizecorticalmicrotubulesintoxoplasmagondii
AT shorttemily alveolarproteinsstabilizecorticalmicrotubulesintoxoplasmagondii
AT manalisscottr alveolarproteinsstabilizecorticalmicrotubulesintoxoplasmagondii
AT meissnermarkus alveolarproteinsstabilizecorticalmicrotubulesintoxoplasmagondii
AT louridosebastian alveolarproteinsstabilizecorticalmicrotubulesintoxoplasmagondii