Cargando…

Dual-wavelength multifunctional metadevices based on modularization design by using indium-tin-oxide

Combining two or several functionalities into a single metadevice is of significant importance and attracts growing interest in recent years. We here introduce the concept of modularization design in dual-wavelength multifunctional metadevice, which is composed of a lower metasurface and an upper me...

Descripción completa

Detalles Bibliográficos
Autores principales: Luan, Jing, Huang, Lirong, Ling, Yonghong, Liu, Wenbing, Ba, Chunfa, Li, Shuang, Min, Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6344538/
https://www.ncbi.nlm.nih.gov/pubmed/30674947
http://dx.doi.org/10.1038/s41598-018-36595-7
Descripción
Sumario:Combining two or several functionalities into a single metadevice is of significant importance and attracts growing interest in recent years. We here introduce the concept of modularization design in dual-wavelength multifunctional metadevice, which is composed of a lower metasurface and an upper metasurface with an indium-tin-oxide (ITO) layer. Benefiting from the fact that ITO holds high infrared (IR) reflection while transparence at visible wavelengths, the metadevice can work in reflection and transmission modes at two very distinct wavelengths, one is 2365 nm in the IR band and the other 650 nm in the visible range. More interestingly and importantly, the two metasurface layers with different functionalities are easy to flexibly integrate into a series of dual-wavelength multifunctional metadevices, with negligible interaction between them and no need of re-designing or re-optimizing their structure parameters. Based on modularization design and functional integration, four kinds of dual-wavelength multifunctional metadevices are demonstrated, which can perform reflective deflection/focusing at 2365 nm and transmissive deflection/focusing at 650 nm. We believe our work may open a straight-forward and flexible way in designing multi-wavelength multifunctional metadevices and photonic integrated devices.