Cargando…

Concurrent initiation of intra-aortic balloon pumping with extracorporeal membrane oxygenation reduced in-hospital mortality in postcardiotomy cardiogenic shock

BACKGROUND: Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) is widely used in postcardiotomy cardiac shock (PCS). The factors that affect mortality in patients who receive ECMO for PCS remain unclear. In this study, we analyzed the outcomes, predictive factors and complications of ECMO u...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Kai, Hou, Jianfeng, Tang, Hanwei, Hu, Shengshou
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6344560/
https://www.ncbi.nlm.nih.gov/pubmed/30673888
http://dx.doi.org/10.1186/s13613-019-0496-9
Descripción
Sumario:BACKGROUND: Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) is widely used in postcardiotomy cardiac shock (PCS). The factors that affect mortality in patients who receive ECMO for PCS remain unclear. In this study, we analyzed the outcomes, predictive factors and complications of ECMO use for PCS. METHODS: A total of 152 adult subjects who received VA-ECMO for PCS in Fuwai Hospital were consecutively included. We retrospectively collected the baseline characteristics, outcomes and complications. Baseline characteristics were compared between survivors with non-survivors, and logistic regression was performed to identify predictive factors for in-hospital mortality. RESULTS: The mean age of the subjects was 49.5 ± 14.1 years, with a male dominancy of 73.7%. The main surgical procedures were heart transplantation (32.2%), coronary artery bypass graft (17%) and valvular surgery (11.8%). Intra-aortic balloon pumping (IABP) was initiated concurrently with ECMO in 32.2% subjects and sequentially in 18.4% subjects. The ECMO weaning rate was 56.6%, and the in-hospital mortality was 52.0%. When compared with non-survivors, survivors had less hypertension (15.1% vs. 35.4%, p = 0.004), secondary thoracotomy before ECMO initiation (19.2% vs. 39.2%, p = 0.007), pre-ECMO cardiac arrest/ventricular fibrillation (11.0% vs. 34.2%, p = 0.001), bedside implantation of ECMO (11.0% vs. 41.8%, p < 0.001), and more transplant procedure (45.2% vs. 20.3%, p = 0.001), concurrent IABP initiation with ECMO (41.1% vs. 24.1%, p = 0.025). Multivariate logistic regression indicated concurrent IABP initiation with ECMO was the only independent protective factor for in-hospital mortality (OR = 0.375, p = 0.041, 95% CI 0.146–0.963). Concurrent IABP initiation with ECMO had less need for continuous renal replacement therapy (30.6% vs. 49.3%, p = 0.039) and less neurological complications (8.2% vs. 22.7%, p = 0.035), but more thrombosis complications (18.4% vs. 2.7%, p = 0.007). CONCLUSION: Concurrent initiation of IABP with ECMO provides better short-term survival for PCS, with reduced peripheral perfusion complications.