Cargando…
Probabilistic Assessment of Glass Forming Ability Rules for Metallic Glasses Aided by Automated Analysis of Phase Diagrams
The use of machine learning techniques to expedite the discovery and development of new materials is an essential step towards the acceleration of a new generation of domain-specific highly functional material systems. In this paper, we use the test case of bulk metallic glasses to highlight the key...
Autores principales: | Dasgupta, Aparajita, Broderick, Scott R., Mack, Connor, Kota, Bhargava U., Subramanian, Ramachandran, Setlur, Srirangaraj, Govindaraju, Venu, Rajan, Krishna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6344582/ https://www.ncbi.nlm.nih.gov/pubmed/30674907 http://dx.doi.org/10.1038/s41598-018-36224-3 |
Ejemplares similares
-
Correlation between the Arrhenius crossover and the glass forming ability in metallic glasses
por: Wen, Tongqi, et al.
Publicado: (2017) -
Stable reliability diagrams for probabilistic classifiers
por: Dimitriadis, Timo, et al.
Publicado: (2021) -
Evidence of a one-dimensional thermodynamic phase diagram for simple glass-formers
por: Hansen, H. W., et al.
Publicado: (2018) -
Investigation of glass forming ability of Al-based metallic glasses by measuring vaporization enthalpy
por: Min, Byeong-uk, et al.
Publicado: (2020) -
Thermodynamically-guided machine learning modelling for predicting the glass-forming ability of bulk metallic glasses
por: Ghorbani, Alireza, et al.
Publicado: (2022)