Cargando…
PERK Signaling Regulates Extracellular Proteostasis of an Amyloidogenic Protein During Endoplasmic Reticulum Stress
The PERK arm of the unfolded protein response (UPR) regulates cellular proteostasis and survival in response to endoplasmic reticulum (ER) stress. However, the impact of PERK signaling on extracellular proteostasis is poorly understood. We define how PERK signaling influences extracellular proteosta...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6344643/ https://www.ncbi.nlm.nih.gov/pubmed/30675021 http://dx.doi.org/10.1038/s41598-018-37207-0 |
Sumario: | The PERK arm of the unfolded protein response (UPR) regulates cellular proteostasis and survival in response to endoplasmic reticulum (ER) stress. However, the impact of PERK signaling on extracellular proteostasis is poorly understood. We define how PERK signaling influences extracellular proteostasis during ER stress using a conformational reporter of the secreted amyloidogenic protein transthyretin (TTR). We show that inhibiting PERK signaling impairs secretion of destabilized TTR during thapsigargin (Tg)-induced ER stress by increasing its ER retention in chaperone-bound complexes. Interestingly, PERK inhibition increases the ER stress-dependent secretion of TTR in non-native conformations that accumulate extracellularly as soluble oligomers. Pharmacologic or genetic TTR stabilization partially restores secretion of native TTR tetramers. However, PERK inhibition still increases the ER stress-dependent secretion of TTR in non-native conformations under these conditions, indicating that the conformation of stable secreted proteins can also be affected by inhibiting PERK. Our results define a role for PERK in regulating extracellular proteostasis during ER stress and indicate that genetic or aging-related alterations in PERK signaling can exacerbate ER stress-related imbalances in extracellular proteostasis implicated in diverse diseases. |
---|