Cargando…
Artificial Intelligence in Pathology
As in other domains, artificial intelligence is becoming increasingly important in medicine. In particular, deep learning-based pattern recognition methods can advance the field of pathology by incorporating clinical, radiologic, and genomic data to accurately diagnose diseases and predict patient p...
Autores principales: | Chang, Hye Yoon, Jung, Chan Kwon, Woo, Junwoo Isaac, Lee, Sanghun, Cho, Joonyoung, Kim, Sun Woo, Kwak, Tae-Yeong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society of Pathologists and the Korean Society for Cytopathology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6344799/ https://www.ncbi.nlm.nih.gov/pubmed/30599506 http://dx.doi.org/10.4132/jptm.2018.12.16 |
Ejemplares similares
-
Automated Gleason Scoring and Tumor Quantification in Prostate Core Needle Biopsy Images Using Deep Neural Networks and Its Comparison with Pathologist-Based Assessment
por: Ryu, Han Suk, et al.
Publicado: (2019) -
Application of Artificial Intelligence in Pathology: Trends and Challenges
por: Kim, Inho, et al.
Publicado: (2022) -
Introduction to digital pathology and computer-aided pathology
por: Nam, Soojeong, et al.
Publicado: (2020) -
Artificial intelligence in perioperative medicine: a narrative review
por: Yoon, Hyun-Kyu, et al.
Publicado: (2022) -
Artificial intelligence in diagnostic pathology
por: Shafi, Saba, et al.
Publicado: (2023)