Cargando…

Oxo‐Hydroxoferrate K(2−x)Fe(4)O(7−x)(OH)(x): Hydroflux Synthesis, Chemical and Thermal Instability, Crystal and Magnetic Structures

The reaction of Fe(NO(3))(3)⋅9 H(2)O with KOH under hydroflux conditions at about 200 °C produces red crystals of K(2−x)Fe(4)O(7−x)(OH)(x) in a quantitative yield. In the crystal structure, edge‐sharing [FeO(6)] octahedra form [Formula: see text] Fe(2)O(6)] honeycomb nets. Pillars consisting of pair...

Descripción completa

Detalles Bibliográficos
Autores principales: Albrecht, Ralf, Hunger, Jens, Block, Theresa, Pöttgen, Rainer, Senyshyn, Anatoliy, Doert, Thomas, Ruck, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345222/
https://www.ncbi.nlm.nih.gov/pubmed/30693170
http://dx.doi.org/10.1002/open.201800229
_version_ 1783389546651582464
author Albrecht, Ralf
Hunger, Jens
Block, Theresa
Pöttgen, Rainer
Senyshyn, Anatoliy
Doert, Thomas
Ruck, Michael
author_facet Albrecht, Ralf
Hunger, Jens
Block, Theresa
Pöttgen, Rainer
Senyshyn, Anatoliy
Doert, Thomas
Ruck, Michael
author_sort Albrecht, Ralf
collection PubMed
description The reaction of Fe(NO(3))(3)⋅9 H(2)O with KOH under hydroflux conditions at about 200 °C produces red crystals of K(2−x)Fe(4)O(7−x)(OH)(x) in a quantitative yield. In the crystal structure, edge‐sharing [FeO(6)] octahedra form [Formula: see text] Fe(2)O(6)] honeycomb nets. Pillars consisting of pairs of vertex‐sharing [FeO(4)] tetrahedra link the honeycomb layers and form columnar halls in which the potassium ions are located. The trigonal (P [Formula: see text] 1m) and the hexagonal (P6(3)/mcm) polytypes of K(2−x)Fe(4)O(7−x)(OH)(x) show oriented intergrowth. The sub‐stoichiometric potassium content (x≈0.3) is compensated by hydroxide ions. K(2−x)Fe(4)O(7−x)(OH)(x) is an antiferromagnet above 2 K and its magnetic structure was determined by neutron powder diffraction. Under ambient conditions, K(2−x)Fe(4)O(7−x)(OH)(x) hydrolyzes and K(2)CO(3) ⋅ H(2)O forms gradually on the surface of the K(2−x)Fe(4)O(7−x)(OH)(x) crystals. Upon annealing at air at about 500 °C, the potassium atoms in the columnar halls start to order into a superstructure. The thermal decomposition of K(2−x)Fe(4)O(7−x)(OH)(x) proceeds via a topotactic transformation into K(1+x′)Fe(11)O(17), adopting the rhombohedral β’’ or the hexagonal β‐aluminate‐type structure, before γ‐Fe(2)O(3) is formed above 950 °C, which then converts into thermodynamically stable α‐Fe(2)O(3).
format Online
Article
Text
id pubmed-6345222
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-63452222019-01-28 Oxo‐Hydroxoferrate K(2−x)Fe(4)O(7−x)(OH)(x): Hydroflux Synthesis, Chemical and Thermal Instability, Crystal and Magnetic Structures Albrecht, Ralf Hunger, Jens Block, Theresa Pöttgen, Rainer Senyshyn, Anatoliy Doert, Thomas Ruck, Michael ChemistryOpen Full Papers The reaction of Fe(NO(3))(3)⋅9 H(2)O with KOH under hydroflux conditions at about 200 °C produces red crystals of K(2−x)Fe(4)O(7−x)(OH)(x) in a quantitative yield. In the crystal structure, edge‐sharing [FeO(6)] octahedra form [Formula: see text] Fe(2)O(6)] honeycomb nets. Pillars consisting of pairs of vertex‐sharing [FeO(4)] tetrahedra link the honeycomb layers and form columnar halls in which the potassium ions are located. The trigonal (P [Formula: see text] 1m) and the hexagonal (P6(3)/mcm) polytypes of K(2−x)Fe(4)O(7−x)(OH)(x) show oriented intergrowth. The sub‐stoichiometric potassium content (x≈0.3) is compensated by hydroxide ions. K(2−x)Fe(4)O(7−x)(OH)(x) is an antiferromagnet above 2 K and its magnetic structure was determined by neutron powder diffraction. Under ambient conditions, K(2−x)Fe(4)O(7−x)(OH)(x) hydrolyzes and K(2)CO(3) ⋅ H(2)O forms gradually on the surface of the K(2−x)Fe(4)O(7−x)(OH)(x) crystals. Upon annealing at air at about 500 °C, the potassium atoms in the columnar halls start to order into a superstructure. The thermal decomposition of K(2−x)Fe(4)O(7−x)(OH)(x) proceeds via a topotactic transformation into K(1+x′)Fe(11)O(17), adopting the rhombohedral β’’ or the hexagonal β‐aluminate‐type structure, before γ‐Fe(2)O(3) is formed above 950 °C, which then converts into thermodynamically stable α‐Fe(2)O(3). John Wiley and Sons Inc. 2019-01-24 /pmc/articles/PMC6345222/ /pubmed/30693170 http://dx.doi.org/10.1002/open.201800229 Text en ©2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Full Papers
Albrecht, Ralf
Hunger, Jens
Block, Theresa
Pöttgen, Rainer
Senyshyn, Anatoliy
Doert, Thomas
Ruck, Michael
Oxo‐Hydroxoferrate K(2−x)Fe(4)O(7−x)(OH)(x): Hydroflux Synthesis, Chemical and Thermal Instability, Crystal and Magnetic Structures
title Oxo‐Hydroxoferrate K(2−x)Fe(4)O(7−x)(OH)(x): Hydroflux Synthesis, Chemical and Thermal Instability, Crystal and Magnetic Structures
title_full Oxo‐Hydroxoferrate K(2−x)Fe(4)O(7−x)(OH)(x): Hydroflux Synthesis, Chemical and Thermal Instability, Crystal and Magnetic Structures
title_fullStr Oxo‐Hydroxoferrate K(2−x)Fe(4)O(7−x)(OH)(x): Hydroflux Synthesis, Chemical and Thermal Instability, Crystal and Magnetic Structures
title_full_unstemmed Oxo‐Hydroxoferrate K(2−x)Fe(4)O(7−x)(OH)(x): Hydroflux Synthesis, Chemical and Thermal Instability, Crystal and Magnetic Structures
title_short Oxo‐Hydroxoferrate K(2−x)Fe(4)O(7−x)(OH)(x): Hydroflux Synthesis, Chemical and Thermal Instability, Crystal and Magnetic Structures
title_sort oxo‐hydroxoferrate k(2−x)fe(4)o(7−x)(oh)(x): hydroflux synthesis, chemical and thermal instability, crystal and magnetic structures
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345222/
https://www.ncbi.nlm.nih.gov/pubmed/30693170
http://dx.doi.org/10.1002/open.201800229
work_keys_str_mv AT albrechtralf oxohydroxoferratek2xfe4o7xohxhydrofluxsynthesischemicalandthermalinstabilitycrystalandmagneticstructures
AT hungerjens oxohydroxoferratek2xfe4o7xohxhydrofluxsynthesischemicalandthermalinstabilitycrystalandmagneticstructures
AT blocktheresa oxohydroxoferratek2xfe4o7xohxhydrofluxsynthesischemicalandthermalinstabilitycrystalandmagneticstructures
AT pottgenrainer oxohydroxoferratek2xfe4o7xohxhydrofluxsynthesischemicalandthermalinstabilitycrystalandmagneticstructures
AT senyshynanatoliy oxohydroxoferratek2xfe4o7xohxhydrofluxsynthesischemicalandthermalinstabilitycrystalandmagneticstructures
AT doertthomas oxohydroxoferratek2xfe4o7xohxhydrofluxsynthesischemicalandthermalinstabilitycrystalandmagneticstructures
AT ruckmichael oxohydroxoferratek2xfe4o7xohxhydrofluxsynthesischemicalandthermalinstabilitycrystalandmagneticstructures