Cargando…
An optimized low-pressure tourniquet murine hind limb ischemia reperfusion model: Inducing acute ischemia reperfusion injury in C57BL/6 wild type mice
Acute ischemia reperfusion injury in skeletal muscle remains an important issue in several fields of regenerative medicine. Thus, a valid model is essential to gain deeper insights into pathophysiological relations and evaluate possible treatment options. While the vascular anatomy of mice regularly...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345480/ https://www.ncbi.nlm.nih.gov/pubmed/30677066 http://dx.doi.org/10.1371/journal.pone.0210961 |
_version_ | 1783389577492299776 |
---|---|
author | Drysch, Marius Wallner, Christoph Schmidt, Sonja Verena Reinkemeier, Felix Wagner, Johannes Maximilian Lehnhardt, Marcus Behr, Björn |
author_facet | Drysch, Marius Wallner, Christoph Schmidt, Sonja Verena Reinkemeier, Felix Wagner, Johannes Maximilian Lehnhardt, Marcus Behr, Björn |
author_sort | Drysch, Marius |
collection | PubMed |
description | Acute ischemia reperfusion injury in skeletal muscle remains an important issue in several fields of regenerative medicine. Thus, a valid model is essential to gain deeper insights into pathophysiological relations and evaluate possible treatment options. While the vascular anatomy of mice regularly prevents sufficient vessel occlusion by invasive methods, there is a multitude of existing models to induce ischemia reperfusion injury without surgical procedures. Since there is no consensus on which model to prefer, this study aims to develop and evaluate a novel, optimized low-pressure tourniquet model. C57BL/6 mice underwent an ischemic procedure by either tourniquet or invasive artery clamping. A sham group served as control. With exception of the sham group, mice underwent 2 hours of ischemia followed by 4 hours of reperfusion. Groups were compared using microcirculatory and spectroscopic measurements, distinctions in tissue edema, histological and immunohistochemical analyses. Both procedures led to a significant decrease in tissue blood flow (- 97% vs. - 86%) and oxygenation (- 87% vs. - 75%) with a superiority of the low-pressure tourniquet. Tissue edema in the tourniquet cohort was significantly increased (+ 59%), while the increase in the clamping cohort was non-significant (+ 7%). Haematoxylin Eosin staining showed significantly more impaired muscle fibers in the tourniquet group (+ 77 p.p. vs. + 11 p.p.) and increased neutrophil infiltration/ROI (+ 51 vs. + 8). Immunofluorescence demonstrated an equal increase of p38 in both groups (7-fold vs. 8-fold), while the increase in apoptotic markers (Caspase-3, 3-Nitrotyrosine, 4-Hydroxynonenal) was significantly higher in the tourniquet group. The low-pressure tourniquet has been proven to produce reproducible and thus reliable ischemia reperfusion injury. In addition, significantly less force was needed than previously stated. It is therefore an important instrument for studying the pathophysiology of ischemia reperfusion injury and for the development of prophylactic as well as therapeutic interventions. |
format | Online Article Text |
id | pubmed-6345480 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-63454802019-02-02 An optimized low-pressure tourniquet murine hind limb ischemia reperfusion model: Inducing acute ischemia reperfusion injury in C57BL/6 wild type mice Drysch, Marius Wallner, Christoph Schmidt, Sonja Verena Reinkemeier, Felix Wagner, Johannes Maximilian Lehnhardt, Marcus Behr, Björn PLoS One Research Article Acute ischemia reperfusion injury in skeletal muscle remains an important issue in several fields of regenerative medicine. Thus, a valid model is essential to gain deeper insights into pathophysiological relations and evaluate possible treatment options. While the vascular anatomy of mice regularly prevents sufficient vessel occlusion by invasive methods, there is a multitude of existing models to induce ischemia reperfusion injury without surgical procedures. Since there is no consensus on which model to prefer, this study aims to develop and evaluate a novel, optimized low-pressure tourniquet model. C57BL/6 mice underwent an ischemic procedure by either tourniquet or invasive artery clamping. A sham group served as control. With exception of the sham group, mice underwent 2 hours of ischemia followed by 4 hours of reperfusion. Groups were compared using microcirculatory and spectroscopic measurements, distinctions in tissue edema, histological and immunohistochemical analyses. Both procedures led to a significant decrease in tissue blood flow (- 97% vs. - 86%) and oxygenation (- 87% vs. - 75%) with a superiority of the low-pressure tourniquet. Tissue edema in the tourniquet cohort was significantly increased (+ 59%), while the increase in the clamping cohort was non-significant (+ 7%). Haematoxylin Eosin staining showed significantly more impaired muscle fibers in the tourniquet group (+ 77 p.p. vs. + 11 p.p.) and increased neutrophil infiltration/ROI (+ 51 vs. + 8). Immunofluorescence demonstrated an equal increase of p38 in both groups (7-fold vs. 8-fold), while the increase in apoptotic markers (Caspase-3, 3-Nitrotyrosine, 4-Hydroxynonenal) was significantly higher in the tourniquet group. The low-pressure tourniquet has been proven to produce reproducible and thus reliable ischemia reperfusion injury. In addition, significantly less force was needed than previously stated. It is therefore an important instrument for studying the pathophysiology of ischemia reperfusion injury and for the development of prophylactic as well as therapeutic interventions. Public Library of Science 2019-01-24 /pmc/articles/PMC6345480/ /pubmed/30677066 http://dx.doi.org/10.1371/journal.pone.0210961 Text en © 2019 Drysch et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Drysch, Marius Wallner, Christoph Schmidt, Sonja Verena Reinkemeier, Felix Wagner, Johannes Maximilian Lehnhardt, Marcus Behr, Björn An optimized low-pressure tourniquet murine hind limb ischemia reperfusion model: Inducing acute ischemia reperfusion injury in C57BL/6 wild type mice |
title | An optimized low-pressure tourniquet murine hind limb ischemia reperfusion model: Inducing acute ischemia reperfusion injury in C57BL/6 wild type mice |
title_full | An optimized low-pressure tourniquet murine hind limb ischemia reperfusion model: Inducing acute ischemia reperfusion injury in C57BL/6 wild type mice |
title_fullStr | An optimized low-pressure tourniquet murine hind limb ischemia reperfusion model: Inducing acute ischemia reperfusion injury in C57BL/6 wild type mice |
title_full_unstemmed | An optimized low-pressure tourniquet murine hind limb ischemia reperfusion model: Inducing acute ischemia reperfusion injury in C57BL/6 wild type mice |
title_short | An optimized low-pressure tourniquet murine hind limb ischemia reperfusion model: Inducing acute ischemia reperfusion injury in C57BL/6 wild type mice |
title_sort | optimized low-pressure tourniquet murine hind limb ischemia reperfusion model: inducing acute ischemia reperfusion injury in c57bl/6 wild type mice |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345480/ https://www.ncbi.nlm.nih.gov/pubmed/30677066 http://dx.doi.org/10.1371/journal.pone.0210961 |
work_keys_str_mv | AT dryschmarius anoptimizedlowpressuretourniquetmurinehindlimbischemiareperfusionmodelinducingacuteischemiareperfusioninjuryinc57bl6wildtypemice AT wallnerchristoph anoptimizedlowpressuretourniquetmurinehindlimbischemiareperfusionmodelinducingacuteischemiareperfusioninjuryinc57bl6wildtypemice AT schmidtsonjaverena anoptimizedlowpressuretourniquetmurinehindlimbischemiareperfusionmodelinducingacuteischemiareperfusioninjuryinc57bl6wildtypemice AT reinkemeierfelix anoptimizedlowpressuretourniquetmurinehindlimbischemiareperfusionmodelinducingacuteischemiareperfusioninjuryinc57bl6wildtypemice AT wagnerjohannesmaximilian anoptimizedlowpressuretourniquetmurinehindlimbischemiareperfusionmodelinducingacuteischemiareperfusioninjuryinc57bl6wildtypemice AT lehnhardtmarcus anoptimizedlowpressuretourniquetmurinehindlimbischemiareperfusionmodelinducingacuteischemiareperfusioninjuryinc57bl6wildtypemice AT behrbjorn anoptimizedlowpressuretourniquetmurinehindlimbischemiareperfusionmodelinducingacuteischemiareperfusioninjuryinc57bl6wildtypemice AT dryschmarius optimizedlowpressuretourniquetmurinehindlimbischemiareperfusionmodelinducingacuteischemiareperfusioninjuryinc57bl6wildtypemice AT wallnerchristoph optimizedlowpressuretourniquetmurinehindlimbischemiareperfusionmodelinducingacuteischemiareperfusioninjuryinc57bl6wildtypemice AT schmidtsonjaverena optimizedlowpressuretourniquetmurinehindlimbischemiareperfusionmodelinducingacuteischemiareperfusioninjuryinc57bl6wildtypemice AT reinkemeierfelix optimizedlowpressuretourniquetmurinehindlimbischemiareperfusionmodelinducingacuteischemiareperfusioninjuryinc57bl6wildtypemice AT wagnerjohannesmaximilian optimizedlowpressuretourniquetmurinehindlimbischemiareperfusionmodelinducingacuteischemiareperfusioninjuryinc57bl6wildtypemice AT lehnhardtmarcus optimizedlowpressuretourniquetmurinehindlimbischemiareperfusionmodelinducingacuteischemiareperfusioninjuryinc57bl6wildtypemice AT behrbjorn optimizedlowpressuretourniquetmurinehindlimbischemiareperfusionmodelinducingacuteischemiareperfusioninjuryinc57bl6wildtypemice |