Cargando…
Molecular Characterization of High Molecular Weight Polyesters by Matrix-Assisted Laser Desorption/Ionization High-Resolution Time-of-Flight Mass Spectrometry Combined with On-plate Alkaline Degradation and Mass Defect Analysis
Matrix-assisted laser desorption ionization high-resolution time-of-flight mass spectrometry (MALDI HR TOF MS) is a powerful tool for the molecular characterization of industrial polymers. However, accurate mass determination and resolution of isobaric ions are possible for oligomer samples only typ...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345728/ https://www.ncbi.nlm.nih.gov/pubmed/30411195 http://dx.doi.org/10.1007/s13361-018-2092-x |
Sumario: | Matrix-assisted laser desorption ionization high-resolution time-of-flight mass spectrometry (MALDI HR TOF MS) is a powerful tool for the molecular characterization of industrial polymers. However, accurate mass determination and resolution of isobaric ions are possible for oligomer samples only typically below m/z 3000. To cut long polymer chains into oligomers suitable for high-resolution mass spectrometry, we propose a simple “on-plate” alkaline degradation of polyesters as a sample pretreatment technique prior to the MALDI TOF MS measurement. This pretreatment can be performed on a MALDI target using a small amount of sample (μg or less) and 1 μL of alkaline reagent by simple pipetting. Informative mass spectra in the oligomeric mass range are successfully recorded but complicated by the variation of end-groups and the copolymeric composition of the degradation products. Data processing is assisted by a series of advanced Kendrick mass defect (KMD) analyses recently proposed by the authors to plot visually understandable two-dimensional maps. On-plate degradation pretreatment, high-resolution MALDI TOF MS measurements, and advanced KMD analyses are innovatively combined for the compositional characterization of bacterial poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) and industrial poly(ethylene terephthalate) samples. [Figure: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s13361-018-2092-x) contains supplementary material, which is available to authorized users. |
---|