Cargando…

Bio-inspired synthesis of aqueous nanoapatite liquid crystals

The macroscopically ordered structure of rod-like nanoapatites within the collagen matrix is of great significance for the mechanical performance of bones and teeth. However, the synthesis of macroscopically ordered nanoapatite remains a challenge. Inspired by the effect of citrate molecules on apat...

Descripción completa

Detalles Bibliográficos
Autores principales: Tan, Junjun, Jin, Xiaoying, Chen, Minfang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345739/
https://www.ncbi.nlm.nih.gov/pubmed/30679530
http://dx.doi.org/10.1038/s41598-018-36843-w
Descripción
Sumario:The macroscopically ordered structure of rod-like nanoapatites within the collagen matrix is of great significance for the mechanical performance of bones and teeth. However, the synthesis of macroscopically ordered nanoapatite remains a challenge. Inspired by the effect of citrate molecules on apatite crystals in natural bone and the similarities between these ordered rod-like nanoapatites and the nematic phase of inorganic liquid crystals (LCs), we synthesized aqueous liquid crystal from rod-like nanoapatites with the aid of sodium citrate. Following a similar procedure, aqueous Mg(OH)(2) and Mg(3)(PO(4))(2) LCs were also prepared. These findings lay the foundation for the fabrication of macroscopically assembled nanoapatite-based functional materials for biomedical applications and offer a green chemical synthesis platform for the development of new types of inorganic LCs. This process may reduce the difficulties in synthesizing large quantities of inorganic LCs so that they can be applied to the fabrication of functional materials.