Cargando…

Tunable Backward Terahertz-wave Parametric Oscillation

Backward optical parametric oscillation has attracted attention for cavityless spectral narrowband generation based on perfect photon conversion. Few demonstrations have shown its potential from the aspect of nonlinear photonics; therefore, the mechanisms of momentum conservation among interacting l...

Descripción completa

Detalles Bibliográficos
Autores principales: Nawata, Kouji, Tokizane, Yu, Takida, Yuma, Minamide, Hiroaki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345757/
https://www.ncbi.nlm.nih.gov/pubmed/30679659
http://dx.doi.org/10.1038/s41598-018-37068-7
Descripción
Sumario:Backward optical parametric oscillation has attracted attention for cavityless spectral narrowband generation based on perfect photon conversion. Few demonstrations have shown its potential from the aspect of nonlinear photonics; therefore, the mechanisms of momentum conservation among interacting light waves have been concealed by the restricted configuration under the phase-matching condition of periodically poled structures. Here, we unveil a tunable mechanism in the terahertz region by active control of the phase-matching condition. The tunability of backward terahertz-wave parametric oscillation is investigated using a quasi-collinear phase-matching model and its frequency range from the sub-terahertz to terahertz region is identified. Transform-limited terahertz-wave pulse is achieved simply by installing a device on the pump propagating line with no cavity. Moreover, the cascading terahertz-wave generation enhances the photon conversion efficiency, thus making nonlinear optics and its applications more promising. The results highlight new capabilities for using modern ferroelectric materials and encourage further research on nonlinear optics.