Cargando…

Floquet group theory and its application to selection rules in harmonic generation

Symmetry is one of the most generic and useful concepts in science, often leading to conservation laws and selection rules. Here we formulate a general group theory for dynamical symmetries (DSs) in time-periodic Floquet systems, and derive their correspondence to observable selection rules. We appl...

Descripción completa

Detalles Bibliográficos
Autores principales: Neufeld, Ofer, Podolsky, Daniel, Cohen, Oren
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345759/
https://www.ncbi.nlm.nih.gov/pubmed/30679423
http://dx.doi.org/10.1038/s41467-018-07935-y
Descripción
Sumario:Symmetry is one of the most generic and useful concepts in science, often leading to conservation laws and selection rules. Here we formulate a general group theory for dynamical symmetries (DSs) in time-periodic Floquet systems, and derive their correspondence to observable selection rules. We apply the theory to harmonic generation, deriving closed-form tables linking DSs of the driving laser and medium (gas, liquid, or solid) in (2+1)D and (3+1)D geometries to the allowed and forbidden harmonic orders and their polarizations. We identify symmetries, including time-reversal-based, reflection-based, and elliptical-based DSs, which lead to selection rules that are not explained by currently known conservation laws. We expect the theory to be useful for ultrafast high harmonic symmetry-breaking spectroscopy, as well as in various other systems such as Floquet topological insulators.