Cargando…

Decrease in radiative forcing by organic aerosol nucleation, climate, and land use change

Organic nucleation is an important source of atmospheric aerosol number concentration, especially in pristine continental regions and during the preindustrial period. Here, we improve on previous simulations that overestimate boundary layer nucleation in the tropics and add changes to climate and la...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Jialei, Penner, Joyce E., Yu, Fangqun, Sillman, Sanford, Andreae, Meinrat O., Coe, Hugh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345905/
https://www.ncbi.nlm.nih.gov/pubmed/30679429
http://dx.doi.org/10.1038/s41467-019-08407-7
Descripción
Sumario:Organic nucleation is an important source of atmospheric aerosol number concentration, especially in pristine continental regions and during the preindustrial period. Here, we improve on previous simulations that overestimate boundary layer nucleation in the tropics and add changes to climate and land use to evaluate climate forcing. Our model includes both pure organic nucleation and heteromolecular nucleation of sulfuric acid and organics and reproduces the profile of aerosol number concentration measured in the Amazon. Organic nucleation decreases the sum of the total aerosol direct and indirect radiative forcing by 12.5%. The addition of climate and land use change decreases the direct radiative forcing (−0.38 W m(−2)) by 6.3% and the indirect radiative forcing (−1.68 W m(−2)) by 3.5% due to the size distribution and number concentration change of secondary organic aerosol and sulfate. Overall, the total radiative forcing associated with anthropogenic aerosols is decreased by 16%.