Cargando…

A panel of eGFP reporters for single base editing by APOBEC-Cas9 editosome complexes

The prospect of introducing a single C-to-T change at a specific genomic location has become feasible with APOBEC-Cas9 editing technologies. We present a panel of eGFP reporters for quantification and optimization of single base editing by APOBEC-Cas9 editosomes. Reporter utility is demonstrated by...

Descripción completa

Detalles Bibliográficos
Autores principales: Martin, A. St., Salamango, D. J., Serebrenik, A. A., Shaban, N. M., Brown, W. L., Harris, R. S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345908/
https://www.ncbi.nlm.nih.gov/pubmed/30679582
http://dx.doi.org/10.1038/s41598-018-36739-9
Descripción
Sumario:The prospect of introducing a single C-to-T change at a specific genomic location has become feasible with APOBEC-Cas9 editing technologies. We present a panel of eGFP reporters for quantification and optimization of single base editing by APOBEC-Cas9 editosomes. Reporter utility is demonstrated by comparing activities of seven human APOBEC3 enzymes and rat APOBEC1 (BE3). APOBEC3A and RNA binding-defective variants of APOBEC3B and APOBEC3H display the highest single base editing efficiencies. APOBEC3B catalytic domain complexes also elicit the lowest frequencies of adjacent off-target events. However, unbiased deep-sequencing of edited reporters shows that all editosomes have some degree of local off-target editing. Thus, further optimization is required to generate true single base editors and the eGFP reporters described here have the potential to facilitate this process.