Cargando…

Stratification of amyotrophic lateral sclerosis patients: a crowdsourcing approach

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease where substantial heterogeneity in clinical presentation urgently requires a better stratification of patients for the development of drug trials and clinical care. In this study we explored stratification through a crowdsourci...

Descripción completa

Detalles Bibliográficos
Autores principales: Kueffner, Robert, Zach, Neta, Bronfeld, Maya, Norel, Raquel, Atassi, Nazem, Balagurusamy, Venkat, Di Camillo, Barbara, Chio, Adriano, Cudkowicz, Merit, Dillenberger, Donna, Garcia-Garcia, Javier, Hardiman, Orla, Hoff, Bruce, Knight, Joshua, Leitner, Melanie L., Li, Guang, Mangravite, Lara, Norman, Thea, Wang, Liuxia, Xiao, Jinfeng, Fang, Wen-Chieh, Peng, Jian, Yang, Chen, Chang, Huan-Jui, Stolovitzky, Gustavo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345935/
https://www.ncbi.nlm.nih.gov/pubmed/30679616
http://dx.doi.org/10.1038/s41598-018-36873-4
_version_ 1783389661160275968
author Kueffner, Robert
Zach, Neta
Bronfeld, Maya
Norel, Raquel
Atassi, Nazem
Balagurusamy, Venkat
Di Camillo, Barbara
Chio, Adriano
Cudkowicz, Merit
Dillenberger, Donna
Garcia-Garcia, Javier
Hardiman, Orla
Hoff, Bruce
Knight, Joshua
Leitner, Melanie L.
Li, Guang
Mangravite, Lara
Norman, Thea
Wang, Liuxia
Xiao, Jinfeng
Fang, Wen-Chieh
Peng, Jian
Yang, Chen
Chang, Huan-Jui
Stolovitzky, Gustavo
author_facet Kueffner, Robert
Zach, Neta
Bronfeld, Maya
Norel, Raquel
Atassi, Nazem
Balagurusamy, Venkat
Di Camillo, Barbara
Chio, Adriano
Cudkowicz, Merit
Dillenberger, Donna
Garcia-Garcia, Javier
Hardiman, Orla
Hoff, Bruce
Knight, Joshua
Leitner, Melanie L.
Li, Guang
Mangravite, Lara
Norman, Thea
Wang, Liuxia
Xiao, Jinfeng
Fang, Wen-Chieh
Peng, Jian
Yang, Chen
Chang, Huan-Jui
Stolovitzky, Gustavo
author_sort Kueffner, Robert
collection PubMed
description Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease where substantial heterogeneity in clinical presentation urgently requires a better stratification of patients for the development of drug trials and clinical care. In this study we explored stratification through a crowdsourcing approach, the DREAM Prize4Life ALS Stratification Challenge. Using data from >10,000 patients from ALS clinical trials and 1479 patients from community-based patient registers, more than 30 teams developed new approaches for machine learning and clustering, outperforming the best current predictions of disease outcome. We propose a new method to integrate and analyze patient clusters across methods, showing a clear pattern of consistent and clinically relevant sub-groups of patients that also enabled the reliable classification of new patients. Our analyses reveal novel insights in ALS and describe for the first time the potential of a crowdsourcing to uncover hidden patient sub-populations, and to accelerate disease understanding and therapeutic development.
format Online
Article
Text
id pubmed-6345935
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-63459352019-01-29 Stratification of amyotrophic lateral sclerosis patients: a crowdsourcing approach Kueffner, Robert Zach, Neta Bronfeld, Maya Norel, Raquel Atassi, Nazem Balagurusamy, Venkat Di Camillo, Barbara Chio, Adriano Cudkowicz, Merit Dillenberger, Donna Garcia-Garcia, Javier Hardiman, Orla Hoff, Bruce Knight, Joshua Leitner, Melanie L. Li, Guang Mangravite, Lara Norman, Thea Wang, Liuxia Xiao, Jinfeng Fang, Wen-Chieh Peng, Jian Yang, Chen Chang, Huan-Jui Stolovitzky, Gustavo Sci Rep Article Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease where substantial heterogeneity in clinical presentation urgently requires a better stratification of patients for the development of drug trials and clinical care. In this study we explored stratification through a crowdsourcing approach, the DREAM Prize4Life ALS Stratification Challenge. Using data from >10,000 patients from ALS clinical trials and 1479 patients from community-based patient registers, more than 30 teams developed new approaches for machine learning and clustering, outperforming the best current predictions of disease outcome. We propose a new method to integrate and analyze patient clusters across methods, showing a clear pattern of consistent and clinically relevant sub-groups of patients that also enabled the reliable classification of new patients. Our analyses reveal novel insights in ALS and describe for the first time the potential of a crowdsourcing to uncover hidden patient sub-populations, and to accelerate disease understanding and therapeutic development. Nature Publishing Group UK 2019-01-24 /pmc/articles/PMC6345935/ /pubmed/30679616 http://dx.doi.org/10.1038/s41598-018-36873-4 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Kueffner, Robert
Zach, Neta
Bronfeld, Maya
Norel, Raquel
Atassi, Nazem
Balagurusamy, Venkat
Di Camillo, Barbara
Chio, Adriano
Cudkowicz, Merit
Dillenberger, Donna
Garcia-Garcia, Javier
Hardiman, Orla
Hoff, Bruce
Knight, Joshua
Leitner, Melanie L.
Li, Guang
Mangravite, Lara
Norman, Thea
Wang, Liuxia
Xiao, Jinfeng
Fang, Wen-Chieh
Peng, Jian
Yang, Chen
Chang, Huan-Jui
Stolovitzky, Gustavo
Stratification of amyotrophic lateral sclerosis patients: a crowdsourcing approach
title Stratification of amyotrophic lateral sclerosis patients: a crowdsourcing approach
title_full Stratification of amyotrophic lateral sclerosis patients: a crowdsourcing approach
title_fullStr Stratification of amyotrophic lateral sclerosis patients: a crowdsourcing approach
title_full_unstemmed Stratification of amyotrophic lateral sclerosis patients: a crowdsourcing approach
title_short Stratification of amyotrophic lateral sclerosis patients: a crowdsourcing approach
title_sort stratification of amyotrophic lateral sclerosis patients: a crowdsourcing approach
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345935/
https://www.ncbi.nlm.nih.gov/pubmed/30679616
http://dx.doi.org/10.1038/s41598-018-36873-4
work_keys_str_mv AT kueffnerrobert stratificationofamyotrophiclateralsclerosispatientsacrowdsourcingapproach
AT zachneta stratificationofamyotrophiclateralsclerosispatientsacrowdsourcingapproach
AT bronfeldmaya stratificationofamyotrophiclateralsclerosispatientsacrowdsourcingapproach
AT norelraquel stratificationofamyotrophiclateralsclerosispatientsacrowdsourcingapproach
AT atassinazem stratificationofamyotrophiclateralsclerosispatientsacrowdsourcingapproach
AT balagurusamyvenkat stratificationofamyotrophiclateralsclerosispatientsacrowdsourcingapproach
AT dicamillobarbara stratificationofamyotrophiclateralsclerosispatientsacrowdsourcingapproach
AT chioadriano stratificationofamyotrophiclateralsclerosispatientsacrowdsourcingapproach
AT cudkowiczmerit stratificationofamyotrophiclateralsclerosispatientsacrowdsourcingapproach
AT dillenbergerdonna stratificationofamyotrophiclateralsclerosispatientsacrowdsourcingapproach
AT garciagarciajavier stratificationofamyotrophiclateralsclerosispatientsacrowdsourcingapproach
AT hardimanorla stratificationofamyotrophiclateralsclerosispatientsacrowdsourcingapproach
AT hoffbruce stratificationofamyotrophiclateralsclerosispatientsacrowdsourcingapproach
AT knightjoshua stratificationofamyotrophiclateralsclerosispatientsacrowdsourcingapproach
AT leitnermelaniel stratificationofamyotrophiclateralsclerosispatientsacrowdsourcingapproach
AT liguang stratificationofamyotrophiclateralsclerosispatientsacrowdsourcingapproach
AT mangravitelara stratificationofamyotrophiclateralsclerosispatientsacrowdsourcingapproach
AT normanthea stratificationofamyotrophiclateralsclerosispatientsacrowdsourcingapproach
AT wangliuxia stratificationofamyotrophiclateralsclerosispatientsacrowdsourcingapproach
AT stratificationofamyotrophiclateralsclerosispatientsacrowdsourcingapproach
AT xiaojinfeng stratificationofamyotrophiclateralsclerosispatientsacrowdsourcingapproach
AT fangwenchieh stratificationofamyotrophiclateralsclerosispatientsacrowdsourcingapproach
AT pengjian stratificationofamyotrophiclateralsclerosispatientsacrowdsourcingapproach
AT yangchen stratificationofamyotrophiclateralsclerosispatientsacrowdsourcingapproach
AT changhuanjui stratificationofamyotrophiclateralsclerosispatientsacrowdsourcingapproach
AT stolovitzkygustavo stratificationofamyotrophiclateralsclerosispatientsacrowdsourcingapproach