Cargando…
Learning from Longitudinal Data in Electronic Health Record and Genetic Data to Improve Cardiovascular Event Prediction
Current approaches to predicting a cardiovascular disease (CVD) event rely on conventional risk factors and cross-sectional data. In this study, we applied machine learning and deep learning models to 10-year CVD event prediction by using longitudinal electronic health record (EHR) and genetic data....
Autores principales: | Zhao, Juan, Feng, QiPing, Wu, Patrick, Lupu, Roxana A., Wilke, Russell A., Wells, Quinn S., Denny, Joshua C., Wei, Wei-Qi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345960/ https://www.ncbi.nlm.nih.gov/pubmed/30679510 http://dx.doi.org/10.1038/s41598-018-36745-x |
Ejemplares similares
-
Validation of risk prediction models applied to longitudinal electronic health record data for the prediction of major cardiovascular events in the presence of data shifts
por: Li, Yikuan, et al.
Publicado: (2022) -
Creation and Validation of an EMR-based Algorithm for Identifying Major Adverse Cardiac Events while on Statins
por: Wei, Wei-Qi, et al.
Publicado: (2014) -
PheMap: a multi-resource knowledge base for high-throughput phenotyping within electronic health records
por: Zheng, Neil S, et al.
Publicado: (2020) -
Extracting research-quality phenotypes from electronic health records to support precision medicine
por: Wei, Wei-Qi, et al.
Publicado: (2015) -
High-throughput framework for genetic analyses of adverse drug reactions using electronic health records
por: Zheng, Neil S., et al.
Publicado: (2021)