Cargando…

Molecular ontogeny of the stomach in the catshark Scyliorhinus canicula

The origin of extracellular digestion in metazoans was accompanied by structural and physiological alterations of the gut. These adaptations culminated in the differentiation of a novel digestive structure in jawed vertebrates, the stomach. Specific endoderm/mesenchyme signalling is required for sto...

Descripción completa

Detalles Bibliográficos
Autores principales: Gonçalves, Odete, Freitas, Renata, Ferreira, Patrícia, Araújo, Mafalda, Zhang, GuangJun, Mazan, Sylvie, Cohn, Martin J., Castro, L. Filipe C., Wilson, Jonathan M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6346038/
https://www.ncbi.nlm.nih.gov/pubmed/30679499
http://dx.doi.org/10.1038/s41598-018-36413-0
Descripción
Sumario:The origin of extracellular digestion in metazoans was accompanied by structural and physiological alterations of the gut. These adaptations culminated in the differentiation of a novel digestive structure in jawed vertebrates, the stomach. Specific endoderm/mesenchyme signalling is required for stomach differentiation, involving the growth and transcription factors: 1) Shh and Bmp4, required for stomach outgrowth; 2) Barx1, Sfrps and Sox2, required for gastric epithelium development and 3) Cdx1 and Cdx2, involved in intestinal versus gastric identity. Thus, modulation of endoderm/mesenchyme signalling emerges as a plausible mechanism linked to the origin of the stomach. In order to gain insight into the ancient mechanisms capable of generating this structure in jawed vertebrates, we characterised the development of the gut in the catshark Scyliorhinus canicula. As chondrichthyans, these animals retained plesiomorphic features of jawed vertebrates, including a well-differentiated stomach. We identified a clear molecular regionalization of their embryonic gut, characterised by the expression of barx1 and sox2 in the prospective stomach region and expression of cdx1 and cdx2 in the prospective intestine. Furthermore, we show that gastric gland development occurs close to hatching, accompanied by the onset of gastric proton pump activity. Our findings favour a scenario in which the developmental mechanisms involved in the origin of the stomach were present in the common ancestor of chondrichthyans and osteichthyans.