Cargando…

Physical Origin of Early Failure for Contaminated Optics

Laser-Induced optical breakdown often occurs unexpectedly at optical intensities far lower than those predicted by ultra-short pulse laser experiments, and is usually attributed to contamination. To determine the physical mechanism, optical coatings were contaminated with carbon and steel microparti...

Descripción completa

Detalles Bibliográficos
Autores principales: Brown, Andrew, Bernot, David, Ogloza, Albert, Olson, Kyle, Thomas, Jeff, Talghader, Joseph
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6346064/
https://www.ncbi.nlm.nih.gov/pubmed/30679675
http://dx.doi.org/10.1038/s41598-018-37337-5
Descripción
Sumario:Laser-Induced optical breakdown often occurs unexpectedly at optical intensities far lower than those predicted by ultra-short pulse laser experiments, and is usually attributed to contamination. To determine the physical mechanism, optical coatings were contaminated with carbon and steel microparticles and stressed using a 17 kW continuous-wave laser. Breakdown occurred at intensity levels many orders of magnitude lower than expected in clean, pristine materials. Damage thresholds were found to strongly follow the bandgap energy of the film. A thermal model incorporating the particle absorption, interface heat transfer, and free carrier absorption was developed, and it explains the observed data, indicating that surface contamination heated by the laser thermally generates free carriers in the films. The observed bandgap dependence is in direct contrast to the behavior observed for clean samples under continuous wave and long-pulse illumination, and, unexpectedly, has similarities to ultra-short pulse breakdown for clean samples, albeit with a substantially different physical mechanism.