Cargando…
Nucleotide-level Convolutional Neural Networks for Pre-miRNA Classification
Due to the biogenesis difference, miRNAs can be divided into canonical microRNAs and mirtrons. Compared to canonical microRNAs, mirtrons are less conserved and hard to be identified. Except stringent annotations based on experiments, many in silico computational methods have be developed to classify...
Autores principales: | Zheng, Xueming, Xu, Shungao, Zhang, Ying, Huang, Xinxiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6346112/ https://www.ncbi.nlm.nih.gov/pubmed/30679648 http://dx.doi.org/10.1038/s41598-018-36946-4 |
Ejemplares similares
-
Prediction of miRNA targets by learning from interaction sequences
por: Zheng, Xueming, et al.
Publicado: (2020) -
GCNCMI: A Graph Convolutional Neural Network Approach for Predicting circRNA-miRNA Interactions
por: He, Jie, et al.
Publicado: (2022) -
Nucleotide-level prediction of CircRNA-protein binding based on fully convolutional neural network
por: Shen, Zhen, et al.
Publicado: (2023) -
MTAGCN: predicting miRNA-target associations in Camellia sinensis var. assamica through graph convolution neural network
por: Feng, Haisong, et al.
Publicado: (2022) -
miRNA sensitivity to Drosha levels correlates with pre-miRNA secondary structure
por: Sperber, Henrik, et al.
Publicado: (2014)