Cargando…
Combining multimodal imaging and treatment features improves machine learning‐based prognostic assessment in patients with glioblastoma multiforme
BACKGROUND: For Glioblastoma (GBM), various prognostic nomograms have been proposed. This study aims to evaluate machine learning models to predict patients' overall survival (OS) and progression‐free survival (PFS) on the basis of clinical, pathological, semantic MRI‐based, and FET‐PET/CT‐deri...
Autores principales: | Peeken, Jan C., Goldberg, Tatyana, Pyka, Thomas, Bernhofer, Michael, Wiestler, Benedikt, Kessel, Kerstin A., Tafti, Pouya D., Nüsslin, Fridtjof, Braun, Andreas E., Zimmer, Claus, Rost, Burkhard, Combs, Stephanie E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6346243/ https://www.ncbi.nlm.nih.gov/pubmed/30561851 http://dx.doi.org/10.1002/cam4.1908 |
Ejemplares similares
-
Editorial: Data Based Radiation Oncology—Design of Clinical Trials
por: Kessel, Kerstin Anne, et al.
Publicado: (2018) -
MRI- and CT-determined changes of dysphagia / aspiration-related structures (DARS) during and after radiotherapy
por: Pigorsch, Steffi U., et al.
Publicado: (2020) -
NLSdb—major update for database of nuclear localization signals and nuclear export signals
por: Bernhofer, Michael, et al.
Publicado: (2018) -
TMbed: transmembrane proteins predicted through language model embeddings
por: Bernhofer, Michael, et al.
Publicado: (2022) -
Human Glioma Migration and Infiltration Properties as a Target for Personalized Radiation Medicine
por: Wank, Michaela, et al.
Publicado: (2018)