Cargando…

A gene expression signature‐based nomogram model in prediction of breast cancer bone metastases

Breast cancer is prone to form bone metastases and subsequent skeletal‐related events (SREs) dramatically decrease patients’ quality of life and survival. Prediction and early management of bone lesions are valuable; however, proper prognostic models are inadequate. In the current study, we reviewed...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Chenglong, Lou, Yan, Wang, Yao, Wang, Dongsheng, Tang, Liang, Gao, Xin, Zhang, Kun, Xu, Wei, Liu, Tielong, Xiao, Jianru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6346244/
https://www.ncbi.nlm.nih.gov/pubmed/30575323
http://dx.doi.org/10.1002/cam4.1932
_version_ 1783389726170939392
author Zhao, Chenglong
Lou, Yan
Wang, Yao
Wang, Dongsheng
Tang, Liang
Gao, Xin
Zhang, Kun
Xu, Wei
Liu, Tielong
Xiao, Jianru
author_facet Zhao, Chenglong
Lou, Yan
Wang, Yao
Wang, Dongsheng
Tang, Liang
Gao, Xin
Zhang, Kun
Xu, Wei
Liu, Tielong
Xiao, Jianru
author_sort Zhao, Chenglong
collection PubMed
description Breast cancer is prone to form bone metastases and subsequent skeletal‐related events (SREs) dramatically decrease patients’ quality of life and survival. Prediction and early management of bone lesions are valuable; however, proper prognostic models are inadequate. In the current study, we reviewed a total of 572 breast cancer patients in three microarray data sets including 191 bone metastases and 381 metastases‐free. Gene set enrichment analysis (GSEA) indicated less aggressive and low‐grade features of patients with bone metastases compared with metastases‐free ones, while luminal subtypes are more prone to form bone metastases. Five bone metastases‐related genes (KRT23, REEP1, SPIB, ALDH3B2, and GLDC) were identified and subjected to construct a gene expression signature‐based nomogram (GESBN) model. The model performed well in both training and testing sets for evaluation of breast cancer bone metastases (BCBM). Clinically, the model may help in prediction of early bone metastases, prevention and management of SREs, and even help to prolong survivals for patients with BCBM. The five‐gene GESBN model showed some implications as molecular diagnostic markers and therapeutic targets. Furthermore, our study also provided a way for analysis of tumor organ‐specific metastases. To the best of our knowledge, this is the first published model focused on tumor organ‐specific metastases.
format Online
Article
Text
id pubmed-6346244
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-63462442019-01-29 A gene expression signature‐based nomogram model in prediction of breast cancer bone metastases Zhao, Chenglong Lou, Yan Wang, Yao Wang, Dongsheng Tang, Liang Gao, Xin Zhang, Kun Xu, Wei Liu, Tielong Xiao, Jianru Cancer Med Clinical Cancer Research Breast cancer is prone to form bone metastases and subsequent skeletal‐related events (SREs) dramatically decrease patients’ quality of life and survival. Prediction and early management of bone lesions are valuable; however, proper prognostic models are inadequate. In the current study, we reviewed a total of 572 breast cancer patients in three microarray data sets including 191 bone metastases and 381 metastases‐free. Gene set enrichment analysis (GSEA) indicated less aggressive and low‐grade features of patients with bone metastases compared with metastases‐free ones, while luminal subtypes are more prone to form bone metastases. Five bone metastases‐related genes (KRT23, REEP1, SPIB, ALDH3B2, and GLDC) were identified and subjected to construct a gene expression signature‐based nomogram (GESBN) model. The model performed well in both training and testing sets for evaluation of breast cancer bone metastases (BCBM). Clinically, the model may help in prediction of early bone metastases, prevention and management of SREs, and even help to prolong survivals for patients with BCBM. The five‐gene GESBN model showed some implications as molecular diagnostic markers and therapeutic targets. Furthermore, our study also provided a way for analysis of tumor organ‐specific metastases. To the best of our knowledge, this is the first published model focused on tumor organ‐specific metastases. John Wiley and Sons Inc. 2018-12-21 /pmc/articles/PMC6346244/ /pubmed/30575323 http://dx.doi.org/10.1002/cam4.1932 Text en © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Clinical Cancer Research
Zhao, Chenglong
Lou, Yan
Wang, Yao
Wang, Dongsheng
Tang, Liang
Gao, Xin
Zhang, Kun
Xu, Wei
Liu, Tielong
Xiao, Jianru
A gene expression signature‐based nomogram model in prediction of breast cancer bone metastases
title A gene expression signature‐based nomogram model in prediction of breast cancer bone metastases
title_full A gene expression signature‐based nomogram model in prediction of breast cancer bone metastases
title_fullStr A gene expression signature‐based nomogram model in prediction of breast cancer bone metastases
title_full_unstemmed A gene expression signature‐based nomogram model in prediction of breast cancer bone metastases
title_short A gene expression signature‐based nomogram model in prediction of breast cancer bone metastases
title_sort gene expression signature‐based nomogram model in prediction of breast cancer bone metastases
topic Clinical Cancer Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6346244/
https://www.ncbi.nlm.nih.gov/pubmed/30575323
http://dx.doi.org/10.1002/cam4.1932
work_keys_str_mv AT zhaochenglong ageneexpressionsignaturebasednomogrammodelinpredictionofbreastcancerbonemetastases
AT louyan ageneexpressionsignaturebasednomogrammodelinpredictionofbreastcancerbonemetastases
AT wangyao ageneexpressionsignaturebasednomogrammodelinpredictionofbreastcancerbonemetastases
AT wangdongsheng ageneexpressionsignaturebasednomogrammodelinpredictionofbreastcancerbonemetastases
AT tangliang ageneexpressionsignaturebasednomogrammodelinpredictionofbreastcancerbonemetastases
AT gaoxin ageneexpressionsignaturebasednomogrammodelinpredictionofbreastcancerbonemetastases
AT zhangkun ageneexpressionsignaturebasednomogrammodelinpredictionofbreastcancerbonemetastases
AT xuwei ageneexpressionsignaturebasednomogrammodelinpredictionofbreastcancerbonemetastases
AT liutielong ageneexpressionsignaturebasednomogrammodelinpredictionofbreastcancerbonemetastases
AT xiaojianru ageneexpressionsignaturebasednomogrammodelinpredictionofbreastcancerbonemetastases
AT zhaochenglong geneexpressionsignaturebasednomogrammodelinpredictionofbreastcancerbonemetastases
AT louyan geneexpressionsignaturebasednomogrammodelinpredictionofbreastcancerbonemetastases
AT wangyao geneexpressionsignaturebasednomogrammodelinpredictionofbreastcancerbonemetastases
AT wangdongsheng geneexpressionsignaturebasednomogrammodelinpredictionofbreastcancerbonemetastases
AT tangliang geneexpressionsignaturebasednomogrammodelinpredictionofbreastcancerbonemetastases
AT gaoxin geneexpressionsignaturebasednomogrammodelinpredictionofbreastcancerbonemetastases
AT zhangkun geneexpressionsignaturebasednomogrammodelinpredictionofbreastcancerbonemetastases
AT xuwei geneexpressionsignaturebasednomogrammodelinpredictionofbreastcancerbonemetastases
AT liutielong geneexpressionsignaturebasednomogrammodelinpredictionofbreastcancerbonemetastases
AT xiaojianru geneexpressionsignaturebasednomogrammodelinpredictionofbreastcancerbonemetastases