Cargando…

Pharmacovigilance evaluation of the relationship between impaired glucose metabolism and BCR‐ABL inhibitor use by using an adverse drug event reporting database

Breakpoint cluster region‐Abelson murine leukemia (BCR‐ABL) inhibitors markedly improve the prognosis of chronic myeloid leukemia. However, high treatment adherence is necessary for successful treatment with BCR‐ABL inhibitors. Therefore, an adequate understanding of the adverse event profiles of BC...

Descripción completa

Detalles Bibliográficos
Autores principales: Okada, Naoto, Niimura, Takahiro, Zamami, Yoshito, Hamano, Hirofumi, Ishida, Shunsuke, Goda, Mitsuhiro, Takechi, Kenshi, Chuma, Masayuki, Imanishi, Masaki, Ishizawa, Keisuke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6346261/
https://www.ncbi.nlm.nih.gov/pubmed/30561126
http://dx.doi.org/10.1002/cam4.1920
Descripción
Sumario:Breakpoint cluster region‐Abelson murine leukemia (BCR‐ABL) inhibitors markedly improve the prognosis of chronic myeloid leukemia. However, high treatment adherence is necessary for successful treatment with BCR‐ABL inhibitors. Therefore, an adequate understanding of the adverse event profiles of BCR‐ABL inhibitors is essential. Although many adverse events are observed in trials, an accurate identification of adverse events based only on clinical trial results is difficult because of strict entry criteria or limited follow‐up durations. In particular, BCR‐ABL inhibitor‐induced impaired glucose metabolism remains controversial. Pharmacovigilance evaluations using spontaneous reporting systems are useful for analyzing drug‐related adverse events in clinical settings. Therefore, we conducted signal detection analyses for BCR‐ABL inhibitor‐induced impaired glucose metabolism by using the FDA Adverse Event Reporting System (FAERS) and Japanese Adverse Drug Event Report (JADER) database. Signals for an increased reporting rate of impaired glucose metabolism were detected only for nilotinib use, whereas these signals were not detected for other BCR‐ABL inhibitors. Subgroup analyses showed a clearly increased nilotinib‐associated reporting rate of impaired glucose metabolism in male and younger patients. Although FAERS‐ and JADER‐based signal detection analyses cannot determine causality perfectly, our study suggests the effects on glucose metabolism are different between BCR‐ABL inhibitors and provides useful information for the selection of appropriate BCR‐ABL inhibitors.