Cargando…
Transferable Machine-Learning Model of the Electron Density
[Image: see text] The electronic charge density plays a central role in determining the behavior of matter at the atomic scale, but its computational evaluation requires demanding electronic-structure calculations. We introduce an atom-centered, symmetry-adapted framework to machine-learn the valenc...
Autores principales: | Grisafi, Andrea, Fabrizio, Alberto, Meyer, Benjamin, Wilkins, David M., Corminboeuf, Clemence, Ceriotti, Michele |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6346381/ https://www.ncbi.nlm.nih.gov/pubmed/30693325 http://dx.doi.org/10.1021/acscentsci.8b00551 |
Ejemplares similares
-
Electron density learning of non-covalent systems
por: Fabrizio, Alberto, et al.
Publicado: (2019) -
Learning Electron Densities in the Condensed Phase
por: Lewis, Alan M., et al.
Publicado: (2021) -
Hamiltonian-Reservoir Replica Exchange and Machine
Learning Potentials for Computational Organic Chemistry
por: Fabregat, Raimon, et al.
Publicado: (2020) -
Local Kernel Regression and Neural Network Approaches
to the Conformational Landscapes of Oligopeptides
por: Fabregat, Raimon, et al.
Publicado: (2022) -
Machine learning meets volcano plots: computational discovery of cross-coupling catalysts
por: Meyer, Benjamin, et al.
Publicado: (2018)