Cargando…
A Selective and Cell-Permeable Mitochondrial Calcium Uniporter (MCU) Inhibitor Preserves Mitochondrial Bioenergetics after Hypoxia/Reoxygenation Injury
[Image: see text] Mitochondrial Ca(2+) ((m)Ca(2+)) uptake mediated by the mitochondrial calcium uniporter (MCU) plays a critical role in signal transduction, bioenergetics, and cell death, and its dysregulation is linked to several human diseases. In this study, we report a new ruthenium complex Ru2...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6346394/ https://www.ncbi.nlm.nih.gov/pubmed/30693334 http://dx.doi.org/10.1021/acscentsci.8b00773 |
Sumario: | [Image: see text] Mitochondrial Ca(2+) ((m)Ca(2+)) uptake mediated by the mitochondrial calcium uniporter (MCU) plays a critical role in signal transduction, bioenergetics, and cell death, and its dysregulation is linked to several human diseases. In this study, we report a new ruthenium complex Ru265 that is cell-permeable, minimally toxic, and highly potent with respect to MCU inhibition. Cells treated with Ru265 show inhibited MCU activity without any effect on cytosolic Ca(2+) dynamics and mitochondrial membrane potential (ΔΨ(m)). Dose-dependent studies reveal that Ru265 is more potent than the currently employed MCU inhibitor Ru360. Site-directed mutagenesis of Cys97 in the N-terminal domain of human MCU ablates the inhibitory activity of Ru265, suggesting that this matrix-residing domain is its target site. Additionally, Ru265 prevented hypoxia/reoxygenation injury and subsequent mitochondrial dysfunction, demonstrating that this new inhibitor is a valuable tool for studying the functional role of the MCU in intact biological models. |
---|