Cargando…

A Selective and Cell-Permeable Mitochondrial Calcium Uniporter (MCU) Inhibitor Preserves Mitochondrial Bioenergetics after Hypoxia/Reoxygenation Injury

[Image: see text] Mitochondrial Ca(2+) ((m)Ca(2+)) uptake mediated by the mitochondrial calcium uniporter (MCU) plays a critical role in signal transduction, bioenergetics, and cell death, and its dysregulation is linked to several human diseases. In this study, we report a new ruthenium complex Ru2...

Descripción completa

Detalles Bibliográficos
Autores principales: Woods, Joshua J., Nemani, Neeharika, Shanmughapriya, Santhanam, Kumar, Akshay, Zhang, MengQi, Nathan, Sarah R., Thomas, Manfred, Carvalho, Edmund, Ramachandran, Karthik, Srikantan, Subramanya, Stathopulos, Peter B., Wilson, Justin J., Madesh, Muniswamy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6346394/
https://www.ncbi.nlm.nih.gov/pubmed/30693334
http://dx.doi.org/10.1021/acscentsci.8b00773
_version_ 1783389742175354880
author Woods, Joshua J.
Nemani, Neeharika
Shanmughapriya, Santhanam
Kumar, Akshay
Zhang, MengQi
Nathan, Sarah R.
Thomas, Manfred
Carvalho, Edmund
Ramachandran, Karthik
Srikantan, Subramanya
Stathopulos, Peter B.
Wilson, Justin J.
Madesh, Muniswamy
author_facet Woods, Joshua J.
Nemani, Neeharika
Shanmughapriya, Santhanam
Kumar, Akshay
Zhang, MengQi
Nathan, Sarah R.
Thomas, Manfred
Carvalho, Edmund
Ramachandran, Karthik
Srikantan, Subramanya
Stathopulos, Peter B.
Wilson, Justin J.
Madesh, Muniswamy
author_sort Woods, Joshua J.
collection PubMed
description [Image: see text] Mitochondrial Ca(2+) ((m)Ca(2+)) uptake mediated by the mitochondrial calcium uniporter (MCU) plays a critical role in signal transduction, bioenergetics, and cell death, and its dysregulation is linked to several human diseases. In this study, we report a new ruthenium complex Ru265 that is cell-permeable, minimally toxic, and highly potent with respect to MCU inhibition. Cells treated with Ru265 show inhibited MCU activity without any effect on cytosolic Ca(2+) dynamics and mitochondrial membrane potential (ΔΨ(m)). Dose-dependent studies reveal that Ru265 is more potent than the currently employed MCU inhibitor Ru360. Site-directed mutagenesis of Cys97 in the N-terminal domain of human MCU ablates the inhibitory activity of Ru265, suggesting that this matrix-residing domain is its target site. Additionally, Ru265 prevented hypoxia/reoxygenation injury and subsequent mitochondrial dysfunction, demonstrating that this new inhibitor is a valuable tool for studying the functional role of the MCU in intact biological models.
format Online
Article
Text
id pubmed-6346394
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-63463942019-01-28 A Selective and Cell-Permeable Mitochondrial Calcium Uniporter (MCU) Inhibitor Preserves Mitochondrial Bioenergetics after Hypoxia/Reoxygenation Injury Woods, Joshua J. Nemani, Neeharika Shanmughapriya, Santhanam Kumar, Akshay Zhang, MengQi Nathan, Sarah R. Thomas, Manfred Carvalho, Edmund Ramachandran, Karthik Srikantan, Subramanya Stathopulos, Peter B. Wilson, Justin J. Madesh, Muniswamy ACS Cent Sci [Image: see text] Mitochondrial Ca(2+) ((m)Ca(2+)) uptake mediated by the mitochondrial calcium uniporter (MCU) plays a critical role in signal transduction, bioenergetics, and cell death, and its dysregulation is linked to several human diseases. In this study, we report a new ruthenium complex Ru265 that is cell-permeable, minimally toxic, and highly potent with respect to MCU inhibition. Cells treated with Ru265 show inhibited MCU activity without any effect on cytosolic Ca(2+) dynamics and mitochondrial membrane potential (ΔΨ(m)). Dose-dependent studies reveal that Ru265 is more potent than the currently employed MCU inhibitor Ru360. Site-directed mutagenesis of Cys97 in the N-terminal domain of human MCU ablates the inhibitory activity of Ru265, suggesting that this matrix-residing domain is its target site. Additionally, Ru265 prevented hypoxia/reoxygenation injury and subsequent mitochondrial dysfunction, demonstrating that this new inhibitor is a valuable tool for studying the functional role of the MCU in intact biological models. American Chemical Society 2019-01-04 2019-01-23 /pmc/articles/PMC6346394/ /pubmed/30693334 http://dx.doi.org/10.1021/acscentsci.8b00773 Text en Copyright © 2019 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Woods, Joshua J.
Nemani, Neeharika
Shanmughapriya, Santhanam
Kumar, Akshay
Zhang, MengQi
Nathan, Sarah R.
Thomas, Manfred
Carvalho, Edmund
Ramachandran, Karthik
Srikantan, Subramanya
Stathopulos, Peter B.
Wilson, Justin J.
Madesh, Muniswamy
A Selective and Cell-Permeable Mitochondrial Calcium Uniporter (MCU) Inhibitor Preserves Mitochondrial Bioenergetics after Hypoxia/Reoxygenation Injury
title A Selective and Cell-Permeable Mitochondrial Calcium Uniporter (MCU) Inhibitor Preserves Mitochondrial Bioenergetics after Hypoxia/Reoxygenation Injury
title_full A Selective and Cell-Permeable Mitochondrial Calcium Uniporter (MCU) Inhibitor Preserves Mitochondrial Bioenergetics after Hypoxia/Reoxygenation Injury
title_fullStr A Selective and Cell-Permeable Mitochondrial Calcium Uniporter (MCU) Inhibitor Preserves Mitochondrial Bioenergetics after Hypoxia/Reoxygenation Injury
title_full_unstemmed A Selective and Cell-Permeable Mitochondrial Calcium Uniporter (MCU) Inhibitor Preserves Mitochondrial Bioenergetics after Hypoxia/Reoxygenation Injury
title_short A Selective and Cell-Permeable Mitochondrial Calcium Uniporter (MCU) Inhibitor Preserves Mitochondrial Bioenergetics after Hypoxia/Reoxygenation Injury
title_sort selective and cell-permeable mitochondrial calcium uniporter (mcu) inhibitor preserves mitochondrial bioenergetics after hypoxia/reoxygenation injury
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6346394/
https://www.ncbi.nlm.nih.gov/pubmed/30693334
http://dx.doi.org/10.1021/acscentsci.8b00773
work_keys_str_mv AT woodsjoshuaj aselectiveandcellpermeablemitochondrialcalciumuniportermcuinhibitorpreservesmitochondrialbioenergeticsafterhypoxiareoxygenationinjury
AT nemanineeharika aselectiveandcellpermeablemitochondrialcalciumuniportermcuinhibitorpreservesmitochondrialbioenergeticsafterhypoxiareoxygenationinjury
AT shanmughapriyasanthanam aselectiveandcellpermeablemitochondrialcalciumuniportermcuinhibitorpreservesmitochondrialbioenergeticsafterhypoxiareoxygenationinjury
AT kumarakshay aselectiveandcellpermeablemitochondrialcalciumuniportermcuinhibitorpreservesmitochondrialbioenergeticsafterhypoxiareoxygenationinjury
AT zhangmengqi aselectiveandcellpermeablemitochondrialcalciumuniportermcuinhibitorpreservesmitochondrialbioenergeticsafterhypoxiareoxygenationinjury
AT nathansarahr aselectiveandcellpermeablemitochondrialcalciumuniportermcuinhibitorpreservesmitochondrialbioenergeticsafterhypoxiareoxygenationinjury
AT thomasmanfred aselectiveandcellpermeablemitochondrialcalciumuniportermcuinhibitorpreservesmitochondrialbioenergeticsafterhypoxiareoxygenationinjury
AT carvalhoedmund aselectiveandcellpermeablemitochondrialcalciumuniportermcuinhibitorpreservesmitochondrialbioenergeticsafterhypoxiareoxygenationinjury
AT ramachandrankarthik aselectiveandcellpermeablemitochondrialcalciumuniportermcuinhibitorpreservesmitochondrialbioenergeticsafterhypoxiareoxygenationinjury
AT srikantansubramanya aselectiveandcellpermeablemitochondrialcalciumuniportermcuinhibitorpreservesmitochondrialbioenergeticsafterhypoxiareoxygenationinjury
AT stathopulospeterb aselectiveandcellpermeablemitochondrialcalciumuniportermcuinhibitorpreservesmitochondrialbioenergeticsafterhypoxiareoxygenationinjury
AT wilsonjustinj aselectiveandcellpermeablemitochondrialcalciumuniportermcuinhibitorpreservesmitochondrialbioenergeticsafterhypoxiareoxygenationinjury
AT madeshmuniswamy aselectiveandcellpermeablemitochondrialcalciumuniportermcuinhibitorpreservesmitochondrialbioenergeticsafterhypoxiareoxygenationinjury
AT woodsjoshuaj selectiveandcellpermeablemitochondrialcalciumuniportermcuinhibitorpreservesmitochondrialbioenergeticsafterhypoxiareoxygenationinjury
AT nemanineeharika selectiveandcellpermeablemitochondrialcalciumuniportermcuinhibitorpreservesmitochondrialbioenergeticsafterhypoxiareoxygenationinjury
AT shanmughapriyasanthanam selectiveandcellpermeablemitochondrialcalciumuniportermcuinhibitorpreservesmitochondrialbioenergeticsafterhypoxiareoxygenationinjury
AT kumarakshay selectiveandcellpermeablemitochondrialcalciumuniportermcuinhibitorpreservesmitochondrialbioenergeticsafterhypoxiareoxygenationinjury
AT zhangmengqi selectiveandcellpermeablemitochondrialcalciumuniportermcuinhibitorpreservesmitochondrialbioenergeticsafterhypoxiareoxygenationinjury
AT nathansarahr selectiveandcellpermeablemitochondrialcalciumuniportermcuinhibitorpreservesmitochondrialbioenergeticsafterhypoxiareoxygenationinjury
AT thomasmanfred selectiveandcellpermeablemitochondrialcalciumuniportermcuinhibitorpreservesmitochondrialbioenergeticsafterhypoxiareoxygenationinjury
AT carvalhoedmund selectiveandcellpermeablemitochondrialcalciumuniportermcuinhibitorpreservesmitochondrialbioenergeticsafterhypoxiareoxygenationinjury
AT ramachandrankarthik selectiveandcellpermeablemitochondrialcalciumuniportermcuinhibitorpreservesmitochondrialbioenergeticsafterhypoxiareoxygenationinjury
AT srikantansubramanya selectiveandcellpermeablemitochondrialcalciumuniportermcuinhibitorpreservesmitochondrialbioenergeticsafterhypoxiareoxygenationinjury
AT stathopulospeterb selectiveandcellpermeablemitochondrialcalciumuniportermcuinhibitorpreservesmitochondrialbioenergeticsafterhypoxiareoxygenationinjury
AT wilsonjustinj selectiveandcellpermeablemitochondrialcalciumuniportermcuinhibitorpreservesmitochondrialbioenergeticsafterhypoxiareoxygenationinjury
AT madeshmuniswamy selectiveandcellpermeablemitochondrialcalciumuniportermcuinhibitorpreservesmitochondrialbioenergeticsafterhypoxiareoxygenationinjury