Cargando…

microRNA-342-3p targets FOXQ1 to suppress the aggressive phenotype of nasopharyngeal carcinoma cells

BACKGROUND: microRNA (miR)-342–3p is frequently dysregulated in human cancers. In the present study, we aimed to explore the expression, prognostic significance, and biological relevance of miR-342-3p in nasopharyngeal carcinoma (NPC). METHODS: We examined miR-342-3p expression in 79 paired NPC spec...

Descripción completa

Detalles Bibliográficos
Autores principales: Cui, Zheqing, Zhao, Yulin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6346514/
https://www.ncbi.nlm.nih.gov/pubmed/30678643
http://dx.doi.org/10.1186/s12885-018-5225-5
Descripción
Sumario:BACKGROUND: microRNA (miR)-342–3p is frequently dysregulated in human cancers. In the present study, we aimed to explore the expression, prognostic significance, and biological relevance of miR-342-3p in nasopharyngeal carcinoma (NPC). METHODS: We examined miR-342-3p expression in 79 paired NPC specimens and corresponding normal tissues and analyzed its prognostic impact on overall survival of NPC patients. Gain- and loss-of-function experiments were conducted to determine the biological roles of miR-342-3p. RESULTS: Compared with matched normal nasopharyngeal tissues, miR-342-3p was significantly downregulated in NPC (P = 0.0038). Low miR-342-3p expression was significantly correlated with reduced overall survival (P = 0.0084). Ectopic expression of miR-342-3p significantly suppressed proliferation, colony formation, and invasion of NPC cells. In contrast, depletion of miR-342-3p facilitated NPC cell proliferation and invasion. In vivo xenograft studies confirmed that overexpression of miR-342-3p restrained the growth of NPC xenograft tumors. Mechanistically, FOXQ1 served as a functional target of miR-342-3p. There was a significantly negative correlation between miR-342-3p and FOXQ1 expression (r = − 0.487, P = 0.004) in NPC specimens. Overexpression of FOXQ1 rescued the inhibitory effects of miR-342-3p on NPC cell growth and invasion. CONCLUSIONS: miR-342-3p downregulation predicts poor prognosis in NPC patients and shows suppressive activity against NPC growth and invasion through repression of FOXQ1. Restoration of miR-342-3p may represent a potential therapeutic strategy for NPC.