Cargando…
Parametric and non-parametric gradient matching for network inference: a comparison
BACKGROUND: Reverse engineering of gene regulatory networks from time series gene-expression data is a challenging problem, not only because of the vast sets of candidate interactions but also due to the stochastic nature of gene expression. We limit our analysis to nonlinear differential equation b...
Autores principales: | Dony, Leander, He, Fei, Stumpf, Michael P. H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6346534/ https://www.ncbi.nlm.nih.gov/pubmed/30683048 http://dx.doi.org/10.1186/s12859-018-2590-7 |
Ejemplares similares
-
Comparison of parametric and non‐parametric Bayesian inference for fusing sensory estimates in physiological time‐series analysis
por: Zhu, Tingting, et al.
Publicado: (2021) -
Parametric statistical inference
por: Lindsey, James K.
Publicado: (1996) -
Simulation-based inference for non-parametric statistical comparison of biomolecule dynamics
por: Verdier, Hippolyte, et al.
Publicado: (2023) -
Imprecise Classification with Non-parametric Predictive Inference
por: Moral, Serafín, et al.
Publicado: (2020) -
Examples in parametric inference with R
por: Dixit, Ulhas Jayram
Publicado: (2016)