Cargando…
Effects of dredging on the vegetation in a small lowland river
BACKGROUND: Conventional river engineering operations have a substantial influence on the fluvial ecosystem. Regulation and channelization generally reduce the physical heterogeneity of river beds and banks and the heterogeneity of habitats. They determine the character, diversity and species richne...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6346983/ https://www.ncbi.nlm.nih.gov/pubmed/30697485 http://dx.doi.org/10.7717/peerj.6282 |
Sumario: | BACKGROUND: Conventional river engineering operations have a substantial influence on the fluvial ecosystem. Regulation and channelization generally reduce the physical heterogeneity of river beds and banks and the heterogeneity of habitats. They determine the character, diversity and species richness of plant communities. The effect of river regulation on vegetation has been repeatedly investigated, but few studies have been conducted within reaches of previously regulated rivers. The aim of this work is to expand and current knowledge about the impact of dredging on the vegetation of a regulated section of a lowland river. MATERIALS & METHODS: The study included pre-dredging (1 year before) and post-dredging surveys (results 1 and 2 years after dredging). The vegetation was analysed in terms of species composition, origin of species, life forms, distribution of Grime’s life strategies, and selected ecological factors. The Shannon–Wiener biodiversity index (H) and evenness were also analysed in each year of the study. The impact of dredging on the vascular flora was assessed by ‘before-after-control-impact’ (BACI) analysis. RESULTS: The number of species and biodiversity as measured by the Shannon–Wiener index (H) increased in the analysed section of the river valley. However, enrichment of the flora was observed only on the floodplain, on the surface of the deposited dredging material, while the number of species in the river channel decreased, as dredging of the river bed and levelling of the banks had markedly reduced habitat diversity. Although species richness in the second year after the dredging approached the values recorded before the intervention, the absence of particularly species or phytocenoses associated with shallow river banks and sandbars was still observed. The change in habitat conditions and the destruction of the vegetation cover during the dredging enabled penetration by numerous previously unrecorded alien species of plants and apophytes. There was a perceptible increase in the role of therophytes in the flora. It is worth noting that the number of alien species and therophytes declined significantly in the second year after the dredging. Analysis of the proportions of species representing various life strategies showed that previously unrecorded species with the type R (ruderal) life strategy had appeared, representing by pioneer species occurring in frequently disturbed habitats. There was also a marked increase in the share of species representing the mixed C-R (competitive-ruderal) strategy, occurring in habitats with low levels of stress, whose competitive abilities are limited by repeated disturbances. By the second year after the dredging, however, these changes were largely no longer observed. CONCLUSIONS: Through appropriate maintenance of the regulated river, it can be rapidly recolonized by vegetation after the procedure, but it may lead to the loss of some species and phytocoenoses. |
---|