Cargando…
A sequential Monte Carlo algorithm for inference of subclonal structure in cancer
Tumors are heterogeneous in the sense that they consist of multiple subpopulations of cells, referred to as subclones, each of which is characterized by a distinct profile of genomic variations such as somatic mutations. Inferring the underlying clonal landscape has become an important topic in that...
Autores principales: | Ogundijo, Oyetunji E., Zhu, Kaiyi, Wang, Xiaodong, Anastassiou, Dimitris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6347199/ https://www.ncbi.nlm.nih.gov/pubmed/30682127 http://dx.doi.org/10.1371/journal.pone.0211213 |
Ejemplares similares
-
SeqClone: sequential Monte Carlo based inference of tumor subclones
por: Ogundijo, Oyetunji E., et al.
Publicado: (2019) -
A sequential Monte Carlo approach to gene expression deconvolution
por: Ogundijo, Oyetunji E., et al.
Publicado: (2017) -
Characterization of tumor heterogeneity by latent haplotypes: a sequential Monte Carlo approach
por: Ogundijo, Oyetunji E., et al.
Publicado: (2018) -
Bayesian estimation of scaled mutation rate under the coalescent: a sequential Monte Carlo approach
por: Ogundijo, Oyetunji E., et al.
Publicado: (2017) -
A sequential Monte Carlo framework for haplotype inference in CNV/SNP genotype data
por: Iliadis, Alexandros, et al.
Publicado: (2014)