Cargando…

MALDI imaging mass spectrometry revealed atropine distribution in the ocular tissues and its transit from anterior to posterior regions in the whole-eye of rabbit after topical administration

It is essential to elucidate drug distribution in the ocular tissues and drug transit in the eye for ophthalmic pharmaceutical manufacturers. Atropine is a reversible muscarinic receptor used to treat various diseases. However, its distribution in ocular tissues is still incompletely understood. Mat...

Descripción completa

Detalles Bibliográficos
Autores principales: Mori, Naoto, Mochizuki, Takaharu, Yamazaki, Fumiyoshi, Takei, Shiro, Mano, Hidetoshi, Matsugi, Takeshi, Setou, Mitsutoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6347209/
https://www.ncbi.nlm.nih.gov/pubmed/30682156
http://dx.doi.org/10.1371/journal.pone.0211376
_version_ 1783389898664837120
author Mori, Naoto
Mochizuki, Takaharu
Yamazaki, Fumiyoshi
Takei, Shiro
Mano, Hidetoshi
Matsugi, Takeshi
Setou, Mitsutoshi
author_facet Mori, Naoto
Mochizuki, Takaharu
Yamazaki, Fumiyoshi
Takei, Shiro
Mano, Hidetoshi
Matsugi, Takeshi
Setou, Mitsutoshi
author_sort Mori, Naoto
collection PubMed
description It is essential to elucidate drug distribution in the ocular tissues and drug transit in the eye for ophthalmic pharmaceutical manufacturers. Atropine is a reversible muscarinic receptor used to treat various diseases. However, its distribution in ocular tissues is still incompletely understood. Matrix-assisted laser desorption/ionization–imaging mass spectrometry (MALDI-IMS) evaluates drug distribution in biological samples. However, there have been few investigations of drug distribution in ocular tissues, including whole-eye segments. In the present study, we explored the spatial distribution of atropine in the whole-eye segment by MALDI-IMS, and then evaluated the changes in atropine level along the anterior–posterior and superior–inferior axes. A 1% atropine solution was administered to a rabbit and after 30 min, its eye was enucleated, sectioned, and analyzed by MALDI-IMS. Atropine accumulated primarily in the tear menisci but was found at substantially lower concentrations in the tissue surrounding the conjunctival sacs. Relative differences in atropine levels between the anterior and posterior regions provided insights into the post-instillation behavior of atropine. Atropine signal intensities differed among corneal layers and between the superior and inferior eyeball regions. Differences in signal intensity among tissues indicated that the drug migrated to the posterior regions via a periocular-scleral route. Line scan analysis elucidated atropine transit from the anterior to the posterior region. This information is useful for atropine delivery in the ocular tissues and indicates that MALDI-IMS is effective for revealing drug distribution in whole-eye sections.
format Online
Article
Text
id pubmed-6347209
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-63472092019-02-02 MALDI imaging mass spectrometry revealed atropine distribution in the ocular tissues and its transit from anterior to posterior regions in the whole-eye of rabbit after topical administration Mori, Naoto Mochizuki, Takaharu Yamazaki, Fumiyoshi Takei, Shiro Mano, Hidetoshi Matsugi, Takeshi Setou, Mitsutoshi PLoS One Research Article It is essential to elucidate drug distribution in the ocular tissues and drug transit in the eye for ophthalmic pharmaceutical manufacturers. Atropine is a reversible muscarinic receptor used to treat various diseases. However, its distribution in ocular tissues is still incompletely understood. Matrix-assisted laser desorption/ionization–imaging mass spectrometry (MALDI-IMS) evaluates drug distribution in biological samples. However, there have been few investigations of drug distribution in ocular tissues, including whole-eye segments. In the present study, we explored the spatial distribution of atropine in the whole-eye segment by MALDI-IMS, and then evaluated the changes in atropine level along the anterior–posterior and superior–inferior axes. A 1% atropine solution was administered to a rabbit and after 30 min, its eye was enucleated, sectioned, and analyzed by MALDI-IMS. Atropine accumulated primarily in the tear menisci but was found at substantially lower concentrations in the tissue surrounding the conjunctival sacs. Relative differences in atropine levels between the anterior and posterior regions provided insights into the post-instillation behavior of atropine. Atropine signal intensities differed among corneal layers and between the superior and inferior eyeball regions. Differences in signal intensity among tissues indicated that the drug migrated to the posterior regions via a periocular-scleral route. Line scan analysis elucidated atropine transit from the anterior to the posterior region. This information is useful for atropine delivery in the ocular tissues and indicates that MALDI-IMS is effective for revealing drug distribution in whole-eye sections. Public Library of Science 2019-01-25 /pmc/articles/PMC6347209/ /pubmed/30682156 http://dx.doi.org/10.1371/journal.pone.0211376 Text en © 2019 Mori et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Mori, Naoto
Mochizuki, Takaharu
Yamazaki, Fumiyoshi
Takei, Shiro
Mano, Hidetoshi
Matsugi, Takeshi
Setou, Mitsutoshi
MALDI imaging mass spectrometry revealed atropine distribution in the ocular tissues and its transit from anterior to posterior regions in the whole-eye of rabbit after topical administration
title MALDI imaging mass spectrometry revealed atropine distribution in the ocular tissues and its transit from anterior to posterior regions in the whole-eye of rabbit after topical administration
title_full MALDI imaging mass spectrometry revealed atropine distribution in the ocular tissues and its transit from anterior to posterior regions in the whole-eye of rabbit after topical administration
title_fullStr MALDI imaging mass spectrometry revealed atropine distribution in the ocular tissues and its transit from anterior to posterior regions in the whole-eye of rabbit after topical administration
title_full_unstemmed MALDI imaging mass spectrometry revealed atropine distribution in the ocular tissues and its transit from anterior to posterior regions in the whole-eye of rabbit after topical administration
title_short MALDI imaging mass spectrometry revealed atropine distribution in the ocular tissues and its transit from anterior to posterior regions in the whole-eye of rabbit after topical administration
title_sort maldi imaging mass spectrometry revealed atropine distribution in the ocular tissues and its transit from anterior to posterior regions in the whole-eye of rabbit after topical administration
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6347209/
https://www.ncbi.nlm.nih.gov/pubmed/30682156
http://dx.doi.org/10.1371/journal.pone.0211376
work_keys_str_mv AT morinaoto maldiimagingmassspectrometryrevealedatropinedistributionintheoculartissuesanditstransitfromanteriortoposteriorregionsinthewholeeyeofrabbitaftertopicaladministration
AT mochizukitakaharu maldiimagingmassspectrometryrevealedatropinedistributionintheoculartissuesanditstransitfromanteriortoposteriorregionsinthewholeeyeofrabbitaftertopicaladministration
AT yamazakifumiyoshi maldiimagingmassspectrometryrevealedatropinedistributionintheoculartissuesanditstransitfromanteriortoposteriorregionsinthewholeeyeofrabbitaftertopicaladministration
AT takeishiro maldiimagingmassspectrometryrevealedatropinedistributionintheoculartissuesanditstransitfromanteriortoposteriorregionsinthewholeeyeofrabbitaftertopicaladministration
AT manohidetoshi maldiimagingmassspectrometryrevealedatropinedistributionintheoculartissuesanditstransitfromanteriortoposteriorregionsinthewholeeyeofrabbitaftertopicaladministration
AT matsugitakeshi maldiimagingmassspectrometryrevealedatropinedistributionintheoculartissuesanditstransitfromanteriortoposteriorregionsinthewholeeyeofrabbitaftertopicaladministration
AT setoumitsutoshi maldiimagingmassspectrometryrevealedatropinedistributionintheoculartissuesanditstransitfromanteriortoposteriorregionsinthewholeeyeofrabbitaftertopicaladministration