Cargando…
Using an optimal set of features with a machine learning-based approach to predict effector proteins for Legionella pneumophila
Type IV secretion systems exist in a number of bacterial pathogens and are used to secrete effector proteins directly into host cells in order to change their environment making the environment hospitable for the bacteria. In recent years, several machine learning algorithms have been developed to p...
Autores principales: | Esna Ashari, Zhila, Brayton, Kelly A., Broschat, Shira L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6347213/ https://www.ncbi.nlm.nih.gov/pubmed/30682021 http://dx.doi.org/10.1371/journal.pone.0202312 |
Ejemplares similares
-
An optimal set of features for predicting type IV secretion system effector proteins for a subset of species based on a multi-level feature selection approach
por: Esna Ashari, Zhila, et al.
Publicado: (2018) -
Prediction of T4SS Effector Proteins for Anaplasma phagocytophilum Using OPT4e, A New Software Tool
por: Esna Ashari, Zhila, et al.
Publicado: (2019) -
Genome-Scale Identification of Legionella pneumophila Effectors Using a Machine Learning Approach
por: Burstein, David, et al.
Publicado: (2009) -
Affecting the Effectors: Regulation of Legionella pneumophila Effector Function by Metaeffectors
por: Joseph, Ashley M., et al.
Publicado: (2021) -
ClpP-deletion impairs the virulence of Legionella pneumophila and the optimal translocation of effector proteins
por: Zhao, Bei-bei, et al.
Publicado: (2016)