Cargando…

Which osteoarthritic gait features recover following total knee replacement surgery?

BACKGROUND: Gait analysis can be used to measure variations in joint function in patients with knee osteoarthritis (OA), and is useful when observing longitudinal biomechanical changes following Total Knee Replacement (TKR) surgery. The Cardiff Classifier is an objective classification tool applied...

Descripción completa

Detalles Bibliográficos
Autores principales: Biggs, Paul Robert, Whatling, Gemma Marie, Wilson, Chris, Metcalfe, Andrew John, Holt, Cathy Avril
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6347391/
https://www.ncbi.nlm.nih.gov/pubmed/30682010
http://dx.doi.org/10.1371/journal.pone.0203417
Descripción
Sumario:BACKGROUND: Gait analysis can be used to measure variations in joint function in patients with knee osteoarthritis (OA), and is useful when observing longitudinal biomechanical changes following Total Knee Replacement (TKR) surgery. The Cardiff Classifier is an objective classification tool applied previously to examine the extent of biomechanical recovery following TKR. In this study, it is further developed to reveal the salient features that contribute to recovery towards healthy function. METHODS: Gait analysis was performed on 30 patients before and after TKR surgery, and 30 healthy controls. Median TKR follow-up time was 13 months. The combined application of principal component analysis (PCA) and the Cardiff Classifier defined 18 biomechanical features that discriminated OA from healthy gait. Statistical analysis tested whether these features were affected by TKR surgery and, if so, whether they recovered to values found for the controls. RESULTS: The Cardiff Classifier successfully discriminated between OA and healthy gait in all 60 cases. Of the 18 discriminatory features, only six (33%) were significantly affected by surgery, including features in all three planes of the ground reaction force (p<0.001), ankle dorsiflexion moment (p<0.001), hip adduction moment (p = 0.003), and transverse hip angle (p = 0.007). All but two (89%) of these features remained significantly different to those of the control group after surgery. CONCLUSIONS: This approach was able to discriminate gait biomechanics associated with knee OA. The ground reaction force provided the strongest discriminatory features. Despite increased gait velocity and improvements in self-reported pain and function, which would normally be clinical indicators of recovery, the majority of features were not affected by TKR surgery. This TKR cohort retained pre-operative gait patterns; reduced sagittal hip and knee moments, decreased knee flexion, increased hip flexion, and reduced hip adduction. The changes that were associated with surgery were predominantly found at the ankle and hip, rather than at the knee.