Cargando…

Formation of metallacarboxylic acids through Hieber base reaction. A density functional theory study

Using density functional theory (B97-D/ECP2/PCM//RI-BP86/ECP1 level), we have studied the effects of ligand variation on OH(−) uptake by transition-metal carbonyls (Hieber base reaction), i.e., L(n)M(CO) + OH(−) → [L(n)M(CO(2)H)](−), M = Fe, Ru, Os, L = CO, PMe(3), PF(3), py, bipy, Cl, H. The viabil...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmad, Shahbaz, Berry, Elisabeth A., Boyle, Conor H., Hudson, Christopher G., Ireland, Oliver W., Thompson, Emily A., Bühl, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6347588/
https://www.ncbi.nlm.nih.gov/pubmed/30684012
http://dx.doi.org/10.1007/s00894-018-3915-1
_version_ 1783389946259701760
author Ahmad, Shahbaz
Berry, Elisabeth A.
Boyle, Conor H.
Hudson, Christopher G.
Ireland, Oliver W.
Thompson, Emily A.
Bühl, Michael
author_facet Ahmad, Shahbaz
Berry, Elisabeth A.
Boyle, Conor H.
Hudson, Christopher G.
Ireland, Oliver W.
Thompson, Emily A.
Bühl, Michael
author_sort Ahmad, Shahbaz
collection PubMed
description Using density functional theory (B97-D/ECP2/PCM//RI-BP86/ECP1 level), we have studied the effects of ligand variation on OH(−) uptake by transition-metal carbonyls (Hieber base reaction), i.e., L(n)M(CO) + OH(−) → [L(n)M(CO(2)H)](−), M = Fe, Ru, Os, L = CO, PMe(3), PF(3), py, bipy, Cl, H. The viability of this step depends notably on the nature of the co-ligands, and a large span of driving forces is predicted, ranging from ΔG = −144 kJ/mol to +122 kJ/mol. Based on evaluation of atomic charges from natural population analysis, it is the ability of the co-ligands to delocalize the additional negative charge (through their π-acidity) that is the key factor affecting the driving force for OH(−) uptake. Implications for the design of new catalysts for water gas shift reaction are discussed. [Figure: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00894-018-3915-1) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-6347588
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-63475882019-02-08 Formation of metallacarboxylic acids through Hieber base reaction. A density functional theory study Ahmad, Shahbaz Berry, Elisabeth A. Boyle, Conor H. Hudson, Christopher G. Ireland, Oliver W. Thompson, Emily A. Bühl, Michael J Mol Model Original Paper Using density functional theory (B97-D/ECP2/PCM//RI-BP86/ECP1 level), we have studied the effects of ligand variation on OH(−) uptake by transition-metal carbonyls (Hieber base reaction), i.e., L(n)M(CO) + OH(−) → [L(n)M(CO(2)H)](−), M = Fe, Ru, Os, L = CO, PMe(3), PF(3), py, bipy, Cl, H. The viability of this step depends notably on the nature of the co-ligands, and a large span of driving forces is predicted, ranging from ΔG = −144 kJ/mol to +122 kJ/mol. Based on evaluation of atomic charges from natural population analysis, it is the ability of the co-ligands to delocalize the additional negative charge (through their π-acidity) that is the key factor affecting the driving force for OH(−) uptake. Implications for the design of new catalysts for water gas shift reaction are discussed. [Figure: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00894-018-3915-1) contains supplementary material, which is available to authorized users. Springer Berlin Heidelberg 2019-01-25 2019 /pmc/articles/PMC6347588/ /pubmed/30684012 http://dx.doi.org/10.1007/s00894-018-3915-1 Text en © The Author(s) 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Original Paper
Ahmad, Shahbaz
Berry, Elisabeth A.
Boyle, Conor H.
Hudson, Christopher G.
Ireland, Oliver W.
Thompson, Emily A.
Bühl, Michael
Formation of metallacarboxylic acids through Hieber base reaction. A density functional theory study
title Formation of metallacarboxylic acids through Hieber base reaction. A density functional theory study
title_full Formation of metallacarboxylic acids through Hieber base reaction. A density functional theory study
title_fullStr Formation of metallacarboxylic acids through Hieber base reaction. A density functional theory study
title_full_unstemmed Formation of metallacarboxylic acids through Hieber base reaction. A density functional theory study
title_short Formation of metallacarboxylic acids through Hieber base reaction. A density functional theory study
title_sort formation of metallacarboxylic acids through hieber base reaction. a density functional theory study
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6347588/
https://www.ncbi.nlm.nih.gov/pubmed/30684012
http://dx.doi.org/10.1007/s00894-018-3915-1
work_keys_str_mv AT ahmadshahbaz formationofmetallacarboxylicacidsthroughhieberbasereactionadensityfunctionaltheorystudy
AT berryelisabetha formationofmetallacarboxylicacidsthroughhieberbasereactionadensityfunctionaltheorystudy
AT boyleconorh formationofmetallacarboxylicacidsthroughhieberbasereactionadensityfunctionaltheorystudy
AT hudsonchristopherg formationofmetallacarboxylicacidsthroughhieberbasereactionadensityfunctionaltheorystudy
AT irelandoliverw formationofmetallacarboxylicacidsthroughhieberbasereactionadensityfunctionaltheorystudy
AT thompsonemilya formationofmetallacarboxylicacidsthroughhieberbasereactionadensityfunctionaltheorystudy
AT buhlmichael formationofmetallacarboxylicacidsthroughhieberbasereactionadensityfunctionaltheorystudy