Cargando…

Neoproterozoic glacial origin of the Great Unconformity

The Great Unconformity, a profound gap in Earth’s stratigraphic record often evident below the base of the Cambrian system, has remained among the most enigmatic field observations in Earth science for over a century. While long associated directly or indirectly with the occurrence of the earliest c...

Descripción completa

Detalles Bibliográficos
Autores principales: Keller, C. Brenhin, Husson, Jon M., Mitchell, Ross N., Bottke, William F., Gernon, Thomas M., Boehnke, Patrick, Bell, Elizabeth A., Swanson-Hysell, Nicholas L., Peters, Shanan E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6347685/
https://www.ncbi.nlm.nih.gov/pubmed/30598437
http://dx.doi.org/10.1073/pnas.1804350116
Descripción
Sumario:The Great Unconformity, a profound gap in Earth’s stratigraphic record often evident below the base of the Cambrian system, has remained among the most enigmatic field observations in Earth science for over a century. While long associated directly or indirectly with the occurrence of the earliest complex animal fossils, a conclusive explanation for the formation and global extent of the Great Unconformity has remained elusive. Here we show that the Great Unconformity is associated with a set of large global oxygen and hafnium isotope excursions in magmatic zircon that suggest a late Neoproterozoic crustal erosion and sediment subduction event of unprecedented scale. These excursions, the Great Unconformity, preservational irregularities in the terrestrial bolide impact record, and the first-order pattern of Phanerozoic sedimentation can together be explained by spatially heterogeneous Neoproterozoic glacial erosion totaling a global average of 3–5 vertical kilometers, along with the subsequent thermal and isostatic consequences of this erosion for global continental freeboard.