Cargando…

Phase- and season-dependent changes in social behaviour in cyclic vole populations

BACKGROUND: Social behaviour has been linked to hypotheses explaining multiannual population cycles of small rodents. In this paper we aimed to test empirically that the degree of space sharing among adult breeding female voles is higher during the increase phase than in the crash phase, and that th...

Descripción completa

Detalles Bibliográficos
Autores principales: Johnsen, Kaja, Devineau, Olivier, Andreassen, Harry P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6347810/
https://www.ncbi.nlm.nih.gov/pubmed/30683090
http://dx.doi.org/10.1186/s12898-019-0222-3
Descripción
Sumario:BACKGROUND: Social behaviour has been linked to hypotheses explaining multiannual population cycles of small rodents. In this paper we aimed to test empirically that the degree of space sharing among adult breeding female voles is higher during the increase phase than in the crash phase, and that the degree of sociality is positively related to population growth rate as suggested by Lambin and Krebs (Oikos 61:126–132, 1991) and Andreassen et al. (Oikos 122:507–515, 2013). We followed 24 natural bank vole Myodes glareolus populations over an area of 113 km(2) by monthly live trapping throughout a complete population cycle of three summers and two winters. RESULTS: Using spatially explicit capture-recapture models, we modelled the overlap in adult female home ranges and total population growth rate per season. We identified an increase phase before and during the peak density observation and a crash phase following the peak. Female home range overlap were seasonal- and phase-dependent, while population growth rate was associated with season and female home range overlap. High female home range overlap in the increase phase corresponded to a high population growth rate. CONCLUSIONS: We suggest that intrinsic social behaviour plays a key role in the increase phase of vole population cycles, as social behaviour leads to an increased growth rate, whereas extrinsic factors (predation and/or food) initiate the crash phase. Our results are consistent with those of other studies in a variety of small rodent species.