Cargando…
Complex Mammalian-like Hematopoietic System Found in a Colonial Chordate
Hematopoiesis is an essential process that evolved in multicellular animals. At the heart of this process are hematopoietic stem cells (HSCs), which are multipotent, self-renewing and generate the entire repertoire of blood and immune cells throughout an animal’s life(1). While there are comprehensi...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6347970/ https://www.ncbi.nlm.nih.gov/pubmed/30518860 http://dx.doi.org/10.1038/s41586-018-0783-x |
Sumario: | Hematopoiesis is an essential process that evolved in multicellular animals. At the heart of this process are hematopoietic stem cells (HSCs), which are multipotent, self-renewing and generate the entire repertoire of blood and immune cells throughout an animal’s life(1). While there are comprehensive studies on vertebrate HSC self-renewal, differentiation, physiological regulation and niche occupation, relatively little is known about their evolutionary origin and their niches. Here we study the hematopoietic system of Botryllus schlosseri, a colonial tunicate that has vasculature, circulating blood cells, and interesting stem cell biology and immunity characteristics(2–8). Self-recognition between genetically compatible B. schlosseri colonies leads to the formation of natural parabionts with shared circulation, whereas incompatible colonies reject each other (3,4,7). Using flow-cytometry, whole-transcriptome sequencing of defined cell populations and diverse functional assays, we identified HSCs, progenitors, immune-effector cells, and an HSC niche, and demonstrated that self-recognition inhibits allospecific cytotoxic reactions. Our study reveals that HSC and myeloid lineage immune cells emerged in a common ancestor of tunicates and vertebrates, and these results also suggest that hematopoietic bone marrow and the B. schlosseri endostyle niche evolved from a common origin. |
---|