Cargando…

Cortical Microcircuitry of Performance Monitoring

Medial frontal cortex enables performance monitoring, indexed by the error-related negativity (ERN) and manifest by performance adaptations. In monkeys performing a saccade countermanding (stop signal) task, we recorded EEG over and neural spiking across all layers of the supplementary eye field (SE...

Descripción completa

Detalles Bibliográficos
Autores principales: Sajad, Amirsaman, Godlove, David C., Schall, Jeffrey D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6348027/
https://www.ncbi.nlm.nih.gov/pubmed/30643297
http://dx.doi.org/10.1038/s41593-018-0309-8
Descripción
Sumario:Medial frontal cortex enables performance monitoring, indexed by the error-related negativity (ERN) and manifest by performance adaptations. In monkeys performing a saccade countermanding (stop signal) task, we recorded EEG over and neural spiking across all layers of the supplementary eye field (SEF), an agranular cortical area. Neurons signaling error production, feedback predicting reward gain or loss, and delivery of fluid reward had different spike widths and were concentrated differently across layers. Neurons signaling error or loss of reward were more common in layers 2 and 3 (L2/3), while neurons signaling gain of reward were more common in layers 5 and 6 (L5/6). Variation of error- and reinforcement-related spike rates in L2/3 but not L5/6 predicted response time adaptation. Variation in error-related spike rate in L2/3 but not L5/6 predicted ERN magnitude. These findings reveal novel features of cortical microcircuitry supporting performance monitoring and confirm one cortical source of the ERN.