Cargando…
Potential for Heightened Sulfur-Metabolic Capacity in Coastal Subtropical Microalgae
The activities of microalgae support nutrient cycling that helps to sustain aquatic and terrestrial ecosystems. Most microalgal species, especially those from the subtropics, are genomically uncharacterized. Here we report the isolation and genomic characterization of 22 microalgal species from subt...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6348204/ https://www.ncbi.nlm.nih.gov/pubmed/30684492 http://dx.doi.org/10.1016/j.isci.2018.12.035 |
_version_ | 1783390052510859264 |
---|---|
author | Nelson, David R. Chaiboonchoe, Amphun Fu, Weiqi Hazzouri, Khaled M. Huang, Ziyuan Jaiswal, Ashish Daakour, Sarah Mystikou, Alexandra Arnoux, Marc Sultana, Mehar Salehi-Ashtiani, Kourosh |
author_facet | Nelson, David R. Chaiboonchoe, Amphun Fu, Weiqi Hazzouri, Khaled M. Huang, Ziyuan Jaiswal, Ashish Daakour, Sarah Mystikou, Alexandra Arnoux, Marc Sultana, Mehar Salehi-Ashtiani, Kourosh |
author_sort | Nelson, David R. |
collection | PubMed |
description | The activities of microalgae support nutrient cycling that helps to sustain aquatic and terrestrial ecosystems. Most microalgal species, especially those from the subtropics, are genomically uncharacterized. Here we report the isolation and genomic characterization of 22 microalgal species from subtropical coastal regions belonging to multiple clades and three from temperate areas. Halotolerant strains including Halamphora, Dunaliella, Nannochloris, and Chloroidium comprised the majority of these isolates. The subtropical-based microalgae contained arrays of methyltransferase, pyridine nucleotide-disulfide oxidoreductase, abhydrolase, cystathionine synthase, and small-molecule transporter domains present at high relative abundance. We found that genes for sulfate transport, sulfotransferase, and glutathione S-transferase activities were especially abundant in subtropical, coastal microalgal species and halophytic species in general. Our metabolomics analyses indicate lineage- and habitat-specific sets of biomolecules implicated in niche-specific biological processes. This work effectively expands the collection of available microalgal genomes by ∼50%, and the generated resources provide perspectives for studying halophyte adaptive traits. |
format | Online Article Text |
id | pubmed-6348204 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-63482042019-01-31 Potential for Heightened Sulfur-Metabolic Capacity in Coastal Subtropical Microalgae Nelson, David R. Chaiboonchoe, Amphun Fu, Weiqi Hazzouri, Khaled M. Huang, Ziyuan Jaiswal, Ashish Daakour, Sarah Mystikou, Alexandra Arnoux, Marc Sultana, Mehar Salehi-Ashtiani, Kourosh iScience Article The activities of microalgae support nutrient cycling that helps to sustain aquatic and terrestrial ecosystems. Most microalgal species, especially those from the subtropics, are genomically uncharacterized. Here we report the isolation and genomic characterization of 22 microalgal species from subtropical coastal regions belonging to multiple clades and three from temperate areas. Halotolerant strains including Halamphora, Dunaliella, Nannochloris, and Chloroidium comprised the majority of these isolates. The subtropical-based microalgae contained arrays of methyltransferase, pyridine nucleotide-disulfide oxidoreductase, abhydrolase, cystathionine synthase, and small-molecule transporter domains present at high relative abundance. We found that genes for sulfate transport, sulfotransferase, and glutathione S-transferase activities were especially abundant in subtropical, coastal microalgal species and halophytic species in general. Our metabolomics analyses indicate lineage- and habitat-specific sets of biomolecules implicated in niche-specific biological processes. This work effectively expands the collection of available microalgal genomes by ∼50%, and the generated resources provide perspectives for studying halophyte adaptive traits. Elsevier 2019-01-04 /pmc/articles/PMC6348204/ /pubmed/30684492 http://dx.doi.org/10.1016/j.isci.2018.12.035 Text en © 2019 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Nelson, David R. Chaiboonchoe, Amphun Fu, Weiqi Hazzouri, Khaled M. Huang, Ziyuan Jaiswal, Ashish Daakour, Sarah Mystikou, Alexandra Arnoux, Marc Sultana, Mehar Salehi-Ashtiani, Kourosh Potential for Heightened Sulfur-Metabolic Capacity in Coastal Subtropical Microalgae |
title | Potential for Heightened Sulfur-Metabolic Capacity in Coastal Subtropical Microalgae |
title_full | Potential for Heightened Sulfur-Metabolic Capacity in Coastal Subtropical Microalgae |
title_fullStr | Potential for Heightened Sulfur-Metabolic Capacity in Coastal Subtropical Microalgae |
title_full_unstemmed | Potential for Heightened Sulfur-Metabolic Capacity in Coastal Subtropical Microalgae |
title_short | Potential for Heightened Sulfur-Metabolic Capacity in Coastal Subtropical Microalgae |
title_sort | potential for heightened sulfur-metabolic capacity in coastal subtropical microalgae |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6348204/ https://www.ncbi.nlm.nih.gov/pubmed/30684492 http://dx.doi.org/10.1016/j.isci.2018.12.035 |
work_keys_str_mv | AT nelsondavidr potentialforheightenedsulfurmetaboliccapacityincoastalsubtropicalmicroalgae AT chaiboonchoeamphun potentialforheightenedsulfurmetaboliccapacityincoastalsubtropicalmicroalgae AT fuweiqi potentialforheightenedsulfurmetaboliccapacityincoastalsubtropicalmicroalgae AT hazzourikhaledm potentialforheightenedsulfurmetaboliccapacityincoastalsubtropicalmicroalgae AT huangziyuan potentialforheightenedsulfurmetaboliccapacityincoastalsubtropicalmicroalgae AT jaiswalashish potentialforheightenedsulfurmetaboliccapacityincoastalsubtropicalmicroalgae AT daakoursarah potentialforheightenedsulfurmetaboliccapacityincoastalsubtropicalmicroalgae AT mystikoualexandra potentialforheightenedsulfurmetaboliccapacityincoastalsubtropicalmicroalgae AT arnouxmarc potentialforheightenedsulfurmetaboliccapacityincoastalsubtropicalmicroalgae AT sultanamehar potentialforheightenedsulfurmetaboliccapacityincoastalsubtropicalmicroalgae AT salehiashtianikourosh potentialforheightenedsulfurmetaboliccapacityincoastalsubtropicalmicroalgae |