Cargando…

Biomechanical investigation of the type and configuration of screws used in high tibial osteotomy with titanium locking plate and screw fixation

BACKGROUND: To maintain the corrected alignment after high tibial osteotomy (HTO), fixation with titanium locking plate and screws is widely used in current practice; however, screw breakage is a common complication. Thus, this study was to investigate the mechanical stability of HTO with locking pl...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Yen-Nien, Chang, Chih-Wei, Li, Chun-Ting, Chen, Chih-Hsien, Chung, Chi-Rung, Chang, Chih-Han, Peng, Yao-Te
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6348642/
https://www.ncbi.nlm.nih.gov/pubmed/30691494
http://dx.doi.org/10.1186/s13018-019-1062-8
_version_ 1783390135421763584
author Chen, Yen-Nien
Chang, Chih-Wei
Li, Chun-Ting
Chen, Chih-Hsien
Chung, Chi-Rung
Chang, Chih-Han
Peng, Yao-Te
author_facet Chen, Yen-Nien
Chang, Chih-Wei
Li, Chun-Ting
Chen, Chih-Hsien
Chung, Chi-Rung
Chang, Chih-Han
Peng, Yao-Te
author_sort Chen, Yen-Nien
collection PubMed
description BACKGROUND: To maintain the corrected alignment after high tibial osteotomy (HTO), fixation with titanium locking plate and screws is widely used in current practice; however, screw breakage is a common complication. Thus, this study was to investigate the mechanical stability of HTO with locking plate and various screw fixations, including the length as well as the type. METHODS: A finite element (FE) model involving a distal femur, meniscus, and a proximal tibia with HTO fixed with a titanium locking plate and screws was created. The angle of the medial open wedge was 12°, and bone graft was not used. Two types of screws, namely conventional locking and far-cortical locking screws, with various lengths and configurations were used. At the proximal tibia, conventional locking screws with different lengths, 30 and 55 mm, were used; at the tibia shaft, different screw fixations including one-cortical, two-cortical, and far-cortical locking screws were used. RESULTS: The use of far-cortical locking screw generated the highest equivalent stress on the screws, which was four times (from 137.3 to 541 MPa) higher than that of the one-cortical screw. Also, it led to the maximum deformation of the tibia and a greater gap deformation at the osteotomy site, which was twice (from 0.222 to 0.442 mm) larger than that of the one-cortical screw. The effect of different locking screw length on tibia deformation and implant stress was minor. CONCLUSION: Thus, far-cortical locking screws and plates increase interfragmentary movement but the screw stress is relatively high. Increasing the protection time (partial weight duration) is suggested to decrease the risk of screw breakage in HTO through fixation with titanium far-cortical locking screws and plates.
format Online
Article
Text
id pubmed-6348642
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-63486422019-01-31 Biomechanical investigation of the type and configuration of screws used in high tibial osteotomy with titanium locking plate and screw fixation Chen, Yen-Nien Chang, Chih-Wei Li, Chun-Ting Chen, Chih-Hsien Chung, Chi-Rung Chang, Chih-Han Peng, Yao-Te J Orthop Surg Res Research Article BACKGROUND: To maintain the corrected alignment after high tibial osteotomy (HTO), fixation with titanium locking plate and screws is widely used in current practice; however, screw breakage is a common complication. Thus, this study was to investigate the mechanical stability of HTO with locking plate and various screw fixations, including the length as well as the type. METHODS: A finite element (FE) model involving a distal femur, meniscus, and a proximal tibia with HTO fixed with a titanium locking plate and screws was created. The angle of the medial open wedge was 12°, and bone graft was not used. Two types of screws, namely conventional locking and far-cortical locking screws, with various lengths and configurations were used. At the proximal tibia, conventional locking screws with different lengths, 30 and 55 mm, were used; at the tibia shaft, different screw fixations including one-cortical, two-cortical, and far-cortical locking screws were used. RESULTS: The use of far-cortical locking screw generated the highest equivalent stress on the screws, which was four times (from 137.3 to 541 MPa) higher than that of the one-cortical screw. Also, it led to the maximum deformation of the tibia and a greater gap deformation at the osteotomy site, which was twice (from 0.222 to 0.442 mm) larger than that of the one-cortical screw. The effect of different locking screw length on tibia deformation and implant stress was minor. CONCLUSION: Thus, far-cortical locking screws and plates increase interfragmentary movement but the screw stress is relatively high. Increasing the protection time (partial weight duration) is suggested to decrease the risk of screw breakage in HTO through fixation with titanium far-cortical locking screws and plates. BioMed Central 2019-01-28 /pmc/articles/PMC6348642/ /pubmed/30691494 http://dx.doi.org/10.1186/s13018-019-1062-8 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Chen, Yen-Nien
Chang, Chih-Wei
Li, Chun-Ting
Chen, Chih-Hsien
Chung, Chi-Rung
Chang, Chih-Han
Peng, Yao-Te
Biomechanical investigation of the type and configuration of screws used in high tibial osteotomy with titanium locking plate and screw fixation
title Biomechanical investigation of the type and configuration of screws used in high tibial osteotomy with titanium locking plate and screw fixation
title_full Biomechanical investigation of the type and configuration of screws used in high tibial osteotomy with titanium locking plate and screw fixation
title_fullStr Biomechanical investigation of the type and configuration of screws used in high tibial osteotomy with titanium locking plate and screw fixation
title_full_unstemmed Biomechanical investigation of the type and configuration of screws used in high tibial osteotomy with titanium locking plate and screw fixation
title_short Biomechanical investigation of the type and configuration of screws used in high tibial osteotomy with titanium locking plate and screw fixation
title_sort biomechanical investigation of the type and configuration of screws used in high tibial osteotomy with titanium locking plate and screw fixation
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6348642/
https://www.ncbi.nlm.nih.gov/pubmed/30691494
http://dx.doi.org/10.1186/s13018-019-1062-8
work_keys_str_mv AT chenyennien biomechanicalinvestigationofthetypeandconfigurationofscrewsusedinhightibialosteotomywithtitaniumlockingplateandscrewfixation
AT changchihwei biomechanicalinvestigationofthetypeandconfigurationofscrewsusedinhightibialosteotomywithtitaniumlockingplateandscrewfixation
AT lichunting biomechanicalinvestigationofthetypeandconfigurationofscrewsusedinhightibialosteotomywithtitaniumlockingplateandscrewfixation
AT chenchihhsien biomechanicalinvestigationofthetypeandconfigurationofscrewsusedinhightibialosteotomywithtitaniumlockingplateandscrewfixation
AT chungchirung biomechanicalinvestigationofthetypeandconfigurationofscrewsusedinhightibialosteotomywithtitaniumlockingplateandscrewfixation
AT changchihhan biomechanicalinvestigationofthetypeandconfigurationofscrewsusedinhightibialosteotomywithtitaniumlockingplateandscrewfixation
AT pengyaote biomechanicalinvestigationofthetypeandconfigurationofscrewsusedinhightibialosteotomywithtitaniumlockingplateandscrewfixation