Cargando…
Statistical significance approximation for local similarity analysis of dependent time series data
BACKGROUND: Local similarity analysis (LSA) of time series data has been extensively used to investigate the dynamics of biological systems in a wide range of environments. Recently, a theoretical method was proposed to approximately calculate the statistical significance of local similarity (LS) sc...
Autores principales: | Zhang, Fang, Sun, Fengzhu, Luan, Yihui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6348690/ https://www.ncbi.nlm.nih.gov/pubmed/30691412 http://dx.doi.org/10.1186/s12859-019-2595-x |
Ejemplares similares
-
Efficient Approximation of Statistical Significance in Local Trend Analysis of Dependent Time Series
por: Shan, Ang, et al.
Publicado: (2022) -
Statistical significance approximation in local trend analysis of high-throughput time-series data using the theory of Markov chains
por: Xia, Li C., et al.
Publicado: (2015) -
Sparse generalized linear model with L(0) approximation for feature selection and prediction with big omics data
por: Liu, Zhenqiu, et al.
Publicado: (2017) -
Approximate inference of gene regulatory network models from RNA-Seq time series data
por: Thorne, Thomas
Publicado: (2018) -
Gumbel based p-value approximations for spatial scan statistics
por: Abrams, Allyson M, et al.
Publicado: (2010)