Cargando…
An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis
PURPOSE: To detect visual field (VF) progression by analyzing spatial pattern changes. METHODS: We selected 12,217 eyes from 7360 patients with at least five reliable 24-2 VFs and 5 years of follow-up with an interval of at least 6 months. VFs were decomposed into 16 archetype patterns previously de...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6348996/ https://www.ncbi.nlm.nih.gov/pubmed/30682206 http://dx.doi.org/10.1167/iovs.18-25568 |
_version_ | 1783390208774897664 |
---|---|
author | Wang, Mengyu Shen, Lucy Q. Pasquale, Louis R. Petrakos, Paul Formica, Sydney Boland, Michael V. Wellik, Sarah R. De Moraes, Carlos Gustavo Myers, Jonathan S. Saeedi, Osamah Wang, Hui Baniasadi, Neda Li, Dian Tichelaar, Jorryt Bex, Peter J. Elze, Tobias |
author_facet | Wang, Mengyu Shen, Lucy Q. Pasquale, Louis R. Petrakos, Paul Formica, Sydney Boland, Michael V. Wellik, Sarah R. De Moraes, Carlos Gustavo Myers, Jonathan S. Saeedi, Osamah Wang, Hui Baniasadi, Neda Li, Dian Tichelaar, Jorryt Bex, Peter J. Elze, Tobias |
author_sort | Wang, Mengyu |
collection | PubMed |
description | PURPOSE: To detect visual field (VF) progression by analyzing spatial pattern changes. METHODS: We selected 12,217 eyes from 7360 patients with at least five reliable 24-2 VFs and 5 years of follow-up with an interval of at least 6 months. VFs were decomposed into 16 archetype patterns previously derived by artificial intelligence techniques. Linear regressions were applied to the 16 archetype weights of VF series over time. We defined progression as the decrease rate of the normal archetype or any increase rate of the 15 VF defect archetypes to be outside normal limits. The archetype method was compared with mean deviation (MD) slope, Advanced Glaucoma Intervention Study (AGIS) scoring, Collaborative Initial Glaucoma Treatment Study (CIGTS) scoring, and the permutation of pointwise linear regression (PoPLR), and was validated by a subset of VFs assessed by three glaucoma specialists. RESULTS: In the method development cohort of 11,817 eyes, the archetype method agreed more with MD slope (kappa: 0.37) and PoPLR (0.33) than AGIS (0.12) and CIGTS (0.22). The most frequently progressed patterns included decreased normal pattern (63.7%), and increased nasal steps (16.4%), altitudinal loss (15.9%), superior-peripheral defect (12.1%), paracentral/central defects (10.5%), and near total loss (10.4%). In the clinical validation cohort of 397 eyes with 27.5% of confirmed progression, the agreement (kappa) and accuracy (mean of hit rate and correct rejection rate) of the archetype method (0.51 and 0.77) significantly (P < 0.001 for all) outperformed AGIS (0.06 and 0.52), CIGTS (0.24 and 0.59), MD slope (0.21 and 0.59), and PoPLR (0.26 and 0.60). CONCLUSIONS: The archetype method can inform clinicians of VF progression patterns. |
format | Online Article Text |
id | pubmed-6348996 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | The Association for Research in Vision and Ophthalmology |
record_format | MEDLINE/PubMed |
spelling | pubmed-63489962019-01-29 An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis Wang, Mengyu Shen, Lucy Q. Pasquale, Louis R. Petrakos, Paul Formica, Sydney Boland, Michael V. Wellik, Sarah R. De Moraes, Carlos Gustavo Myers, Jonathan S. Saeedi, Osamah Wang, Hui Baniasadi, Neda Li, Dian Tichelaar, Jorryt Bex, Peter J. Elze, Tobias Invest Ophthalmol Vis Sci Glaucoma PURPOSE: To detect visual field (VF) progression by analyzing spatial pattern changes. METHODS: We selected 12,217 eyes from 7360 patients with at least five reliable 24-2 VFs and 5 years of follow-up with an interval of at least 6 months. VFs were decomposed into 16 archetype patterns previously derived by artificial intelligence techniques. Linear regressions were applied to the 16 archetype weights of VF series over time. We defined progression as the decrease rate of the normal archetype or any increase rate of the 15 VF defect archetypes to be outside normal limits. The archetype method was compared with mean deviation (MD) slope, Advanced Glaucoma Intervention Study (AGIS) scoring, Collaborative Initial Glaucoma Treatment Study (CIGTS) scoring, and the permutation of pointwise linear regression (PoPLR), and was validated by a subset of VFs assessed by three glaucoma specialists. RESULTS: In the method development cohort of 11,817 eyes, the archetype method agreed more with MD slope (kappa: 0.37) and PoPLR (0.33) than AGIS (0.12) and CIGTS (0.22). The most frequently progressed patterns included decreased normal pattern (63.7%), and increased nasal steps (16.4%), altitudinal loss (15.9%), superior-peripheral defect (12.1%), paracentral/central defects (10.5%), and near total loss (10.4%). In the clinical validation cohort of 397 eyes with 27.5% of confirmed progression, the agreement (kappa) and accuracy (mean of hit rate and correct rejection rate) of the archetype method (0.51 and 0.77) significantly (P < 0.001 for all) outperformed AGIS (0.06 and 0.52), CIGTS (0.24 and 0.59), MD slope (0.21 and 0.59), and PoPLR (0.26 and 0.60). CONCLUSIONS: The archetype method can inform clinicians of VF progression patterns. The Association for Research in Vision and Ophthalmology 2019-01 /pmc/articles/PMC6348996/ /pubmed/30682206 http://dx.doi.org/10.1167/iovs.18-25568 Text en Copyright 2019 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. |
spellingShingle | Glaucoma Wang, Mengyu Shen, Lucy Q. Pasquale, Louis R. Petrakos, Paul Formica, Sydney Boland, Michael V. Wellik, Sarah R. De Moraes, Carlos Gustavo Myers, Jonathan S. Saeedi, Osamah Wang, Hui Baniasadi, Neda Li, Dian Tichelaar, Jorryt Bex, Peter J. Elze, Tobias An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis |
title | An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis |
title_full | An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis |
title_fullStr | An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis |
title_full_unstemmed | An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis |
title_short | An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis |
title_sort | artificial intelligence approach to detect visual field progression in glaucoma based on spatial pattern analysis |
topic | Glaucoma |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6348996/ https://www.ncbi.nlm.nih.gov/pubmed/30682206 http://dx.doi.org/10.1167/iovs.18-25568 |
work_keys_str_mv | AT wangmengyu anartificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis AT shenlucyq anartificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis AT pasqualelouisr anartificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis AT petrakospaul anartificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis AT formicasydney anartificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis AT bolandmichaelv anartificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis AT welliksarahr anartificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis AT demoraescarlosgustavo anartificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis AT myersjonathans anartificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis AT saeediosamah anartificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis AT wanghui anartificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis AT baniasadineda anartificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis AT lidian anartificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis AT tichelaarjorryt anartificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis AT bexpeterj anartificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis AT elzetobias anartificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis AT wangmengyu artificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis AT shenlucyq artificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis AT pasqualelouisr artificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis AT petrakospaul artificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis AT formicasydney artificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis AT bolandmichaelv artificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis AT welliksarahr artificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis AT demoraescarlosgustavo artificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis AT myersjonathans artificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis AT saeediosamah artificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis AT wanghui artificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis AT baniasadineda artificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis AT lidian artificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis AT tichelaarjorryt artificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis AT bexpeterj artificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis AT elzetobias artificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis |