Cargando…

An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis

PURPOSE: To detect visual field (VF) progression by analyzing spatial pattern changes. METHODS: We selected 12,217 eyes from 7360 patients with at least five reliable 24-2 VFs and 5 years of follow-up with an interval of at least 6 months. VFs were decomposed into 16 archetype patterns previously de...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Mengyu, Shen, Lucy Q., Pasquale, Louis R., Petrakos, Paul, Formica, Sydney, Boland, Michael V., Wellik, Sarah R., De Moraes, Carlos Gustavo, Myers, Jonathan S., Saeedi, Osamah, Wang, Hui, Baniasadi, Neda, Li, Dian, Tichelaar, Jorryt, Bex, Peter J., Elze, Tobias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6348996/
https://www.ncbi.nlm.nih.gov/pubmed/30682206
http://dx.doi.org/10.1167/iovs.18-25568
_version_ 1783390208774897664
author Wang, Mengyu
Shen, Lucy Q.
Pasquale, Louis R.
Petrakos, Paul
Formica, Sydney
Boland, Michael V.
Wellik, Sarah R.
De Moraes, Carlos Gustavo
Myers, Jonathan S.
Saeedi, Osamah
Wang, Hui
Baniasadi, Neda
Li, Dian
Tichelaar, Jorryt
Bex, Peter J.
Elze, Tobias
author_facet Wang, Mengyu
Shen, Lucy Q.
Pasquale, Louis R.
Petrakos, Paul
Formica, Sydney
Boland, Michael V.
Wellik, Sarah R.
De Moraes, Carlos Gustavo
Myers, Jonathan S.
Saeedi, Osamah
Wang, Hui
Baniasadi, Neda
Li, Dian
Tichelaar, Jorryt
Bex, Peter J.
Elze, Tobias
author_sort Wang, Mengyu
collection PubMed
description PURPOSE: To detect visual field (VF) progression by analyzing spatial pattern changes. METHODS: We selected 12,217 eyes from 7360 patients with at least five reliable 24-2 VFs and 5 years of follow-up with an interval of at least 6 months. VFs were decomposed into 16 archetype patterns previously derived by artificial intelligence techniques. Linear regressions were applied to the 16 archetype weights of VF series over time. We defined progression as the decrease rate of the normal archetype or any increase rate of the 15 VF defect archetypes to be outside normal limits. The archetype method was compared with mean deviation (MD) slope, Advanced Glaucoma Intervention Study (AGIS) scoring, Collaborative Initial Glaucoma Treatment Study (CIGTS) scoring, and the permutation of pointwise linear regression (PoPLR), and was validated by a subset of VFs assessed by three glaucoma specialists. RESULTS: In the method development cohort of 11,817 eyes, the archetype method agreed more with MD slope (kappa: 0.37) and PoPLR (0.33) than AGIS (0.12) and CIGTS (0.22). The most frequently progressed patterns included decreased normal pattern (63.7%), and increased nasal steps (16.4%), altitudinal loss (15.9%), superior-peripheral defect (12.1%), paracentral/central defects (10.5%), and near total loss (10.4%). In the clinical validation cohort of 397 eyes with 27.5% of confirmed progression, the agreement (kappa) and accuracy (mean of hit rate and correct rejection rate) of the archetype method (0.51 and 0.77) significantly (P < 0.001 for all) outperformed AGIS (0.06 and 0.52), CIGTS (0.24 and 0.59), MD slope (0.21 and 0.59), and PoPLR (0.26 and 0.60). CONCLUSIONS: The archetype method can inform clinicians of VF progression patterns.
format Online
Article
Text
id pubmed-6348996
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher The Association for Research in Vision and Ophthalmology
record_format MEDLINE/PubMed
spelling pubmed-63489962019-01-29 An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis Wang, Mengyu Shen, Lucy Q. Pasquale, Louis R. Petrakos, Paul Formica, Sydney Boland, Michael V. Wellik, Sarah R. De Moraes, Carlos Gustavo Myers, Jonathan S. Saeedi, Osamah Wang, Hui Baniasadi, Neda Li, Dian Tichelaar, Jorryt Bex, Peter J. Elze, Tobias Invest Ophthalmol Vis Sci Glaucoma PURPOSE: To detect visual field (VF) progression by analyzing spatial pattern changes. METHODS: We selected 12,217 eyes from 7360 patients with at least five reliable 24-2 VFs and 5 years of follow-up with an interval of at least 6 months. VFs were decomposed into 16 archetype patterns previously derived by artificial intelligence techniques. Linear regressions were applied to the 16 archetype weights of VF series over time. We defined progression as the decrease rate of the normal archetype or any increase rate of the 15 VF defect archetypes to be outside normal limits. The archetype method was compared with mean deviation (MD) slope, Advanced Glaucoma Intervention Study (AGIS) scoring, Collaborative Initial Glaucoma Treatment Study (CIGTS) scoring, and the permutation of pointwise linear regression (PoPLR), and was validated by a subset of VFs assessed by three glaucoma specialists. RESULTS: In the method development cohort of 11,817 eyes, the archetype method agreed more with MD slope (kappa: 0.37) and PoPLR (0.33) than AGIS (0.12) and CIGTS (0.22). The most frequently progressed patterns included decreased normal pattern (63.7%), and increased nasal steps (16.4%), altitudinal loss (15.9%), superior-peripheral defect (12.1%), paracentral/central defects (10.5%), and near total loss (10.4%). In the clinical validation cohort of 397 eyes with 27.5% of confirmed progression, the agreement (kappa) and accuracy (mean of hit rate and correct rejection rate) of the archetype method (0.51 and 0.77) significantly (P < 0.001 for all) outperformed AGIS (0.06 and 0.52), CIGTS (0.24 and 0.59), MD slope (0.21 and 0.59), and PoPLR (0.26 and 0.60). CONCLUSIONS: The archetype method can inform clinicians of VF progression patterns. The Association for Research in Vision and Ophthalmology 2019-01 /pmc/articles/PMC6348996/ /pubmed/30682206 http://dx.doi.org/10.1167/iovs.18-25568 Text en Copyright 2019 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
spellingShingle Glaucoma
Wang, Mengyu
Shen, Lucy Q.
Pasquale, Louis R.
Petrakos, Paul
Formica, Sydney
Boland, Michael V.
Wellik, Sarah R.
De Moraes, Carlos Gustavo
Myers, Jonathan S.
Saeedi, Osamah
Wang, Hui
Baniasadi, Neda
Li, Dian
Tichelaar, Jorryt
Bex, Peter J.
Elze, Tobias
An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis
title An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis
title_full An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis
title_fullStr An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis
title_full_unstemmed An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis
title_short An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis
title_sort artificial intelligence approach to detect visual field progression in glaucoma based on spatial pattern analysis
topic Glaucoma
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6348996/
https://www.ncbi.nlm.nih.gov/pubmed/30682206
http://dx.doi.org/10.1167/iovs.18-25568
work_keys_str_mv AT wangmengyu anartificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis
AT shenlucyq anartificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis
AT pasqualelouisr anartificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis
AT petrakospaul anartificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis
AT formicasydney anartificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis
AT bolandmichaelv anartificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis
AT welliksarahr anartificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis
AT demoraescarlosgustavo anartificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis
AT myersjonathans anartificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis
AT saeediosamah anartificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis
AT wanghui anartificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis
AT baniasadineda anartificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis
AT lidian anartificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis
AT tichelaarjorryt anartificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis
AT bexpeterj anartificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis
AT elzetobias anartificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis
AT wangmengyu artificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis
AT shenlucyq artificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis
AT pasqualelouisr artificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis
AT petrakospaul artificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis
AT formicasydney artificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis
AT bolandmichaelv artificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis
AT welliksarahr artificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis
AT demoraescarlosgustavo artificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis
AT myersjonathans artificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis
AT saeediosamah artificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis
AT wanghui artificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis
AT baniasadineda artificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis
AT lidian artificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis
AT tichelaarjorryt artificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis
AT bexpeterj artificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis
AT elzetobias artificialintelligenceapproachtodetectvisualfieldprogressioninglaucomabasedonspatialpatternanalysis