Cargando…

Oxidative steps during the biosynthesis of squalestatin S1

The squalestatins are a class of highly complex fungal metabolites which are potent inhibitors of squalene synthase with potential use in the control of cholesterol biosynthesis. Little is known of the chemical steps involved in the construction of the 4,8-dioxa-bicyclo[3.2.1]octane core. Here, usin...

Descripción completa

Detalles Bibliográficos
Autores principales: Lebe, Karen E., Cox, Russell J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349020/
https://www.ncbi.nlm.nih.gov/pubmed/30774923
http://dx.doi.org/10.1039/c8sc02615g
Descripción
Sumario:The squalestatins are a class of highly complex fungal metabolites which are potent inhibitors of squalene synthase with potential use in the control of cholesterol biosynthesis. Little is known of the chemical steps involved in the construction of the 4,8-dioxa-bicyclo[3.2.1]octane core. Here, using a combination of directed gene knockout and heterologous expression experiments, we show that two putative non-heme-iron-dependent enzymes appear to catalyse a remarkable series of six consecutive oxidations which set up the bioactive core of the squalestatins. This is followed by the action of an unusual copper-dependent oxygenase which introduces a hydroxyl required for later acetylation.