Cargando…
Engineering of TIMP‐3 as a LAP‐fusion protein for targeting to sites of inflammation
Tissue inhibitor of metalloproteinase (TIMP)‐3 is a natural inhibitor of a range of enzymes that degrade connective tissue and are involved in the pathogenesis of conditions such as arthritis and cancer. We describe here the engineering of TIMP‐3 using a novel drug‐delivery system known as the ‘LAP...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349231/ https://www.ncbi.nlm.nih.gov/pubmed/30450736 http://dx.doi.org/10.1111/jcmm.14019 |
_version_ | 1783390240996589568 |
---|---|
author | Alberts, Ben M. Sacre, Sandra M. Bush, Peter G. Mullen, Lisa M. |
author_facet | Alberts, Ben M. Sacre, Sandra M. Bush, Peter G. Mullen, Lisa M. |
author_sort | Alberts, Ben M. |
collection | PubMed |
description | Tissue inhibitor of metalloproteinase (TIMP)‐3 is a natural inhibitor of a range of enzymes that degrade connective tissue and are involved in the pathogenesis of conditions such as arthritis and cancer. We describe here the engineering of TIMP‐3 using a novel drug‐delivery system known as the ‘LAP technology’. This involves creating therapeutic proteins in fusion with the latency‐associated peptide (LAP) from the cytokine TGF‐? to generate proteins that are biologically inactive until cleavage of the LAP to release the therapy. LAP‐TIMP‐3 was successfully expressed in mammalian cells and the presence of the LAP resulted in a 14‐fold increase in the quantity of recombinant TIMP‐3 produced. LAP‐TIMP‐3 was latent until release from the LAP by treatment with matrix metalloproteinase when it could inhibit proteases of the adamalysins and adamalysins with thrombospondin motifs families, but not matrix metalloproteinases, indicating that this version of TIMP‐3 is a more specific inhibitor than the native protein. There was sufficient protease activity in synovial fluid from human joints with osteoarthritis to release TIMP‐3 from the LAP fusion. These results demonstrate the potential for development of TIMP‐3 as a novel therapy for conditions where upregulation of catabolic enzymes are part of the pathology. |
format | Online Article Text |
id | pubmed-6349231 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-63492312019-02-01 Engineering of TIMP‐3 as a LAP‐fusion protein for targeting to sites of inflammation Alberts, Ben M. Sacre, Sandra M. Bush, Peter G. Mullen, Lisa M. J Cell Mol Med Short Communications Tissue inhibitor of metalloproteinase (TIMP)‐3 is a natural inhibitor of a range of enzymes that degrade connective tissue and are involved in the pathogenesis of conditions such as arthritis and cancer. We describe here the engineering of TIMP‐3 using a novel drug‐delivery system known as the ‘LAP technology’. This involves creating therapeutic proteins in fusion with the latency‐associated peptide (LAP) from the cytokine TGF‐? to generate proteins that are biologically inactive until cleavage of the LAP to release the therapy. LAP‐TIMP‐3 was successfully expressed in mammalian cells and the presence of the LAP resulted in a 14‐fold increase in the quantity of recombinant TIMP‐3 produced. LAP‐TIMP‐3 was latent until release from the LAP by treatment with matrix metalloproteinase when it could inhibit proteases of the adamalysins and adamalysins with thrombospondin motifs families, but not matrix metalloproteinases, indicating that this version of TIMP‐3 is a more specific inhibitor than the native protein. There was sufficient protease activity in synovial fluid from human joints with osteoarthritis to release TIMP‐3 from the LAP fusion. These results demonstrate the potential for development of TIMP‐3 as a novel therapy for conditions where upregulation of catabolic enzymes are part of the pathology. John Wiley and Sons Inc. 2018-11-18 2019-02 /pmc/articles/PMC6349231/ /pubmed/30450736 http://dx.doi.org/10.1111/jcmm.14019 Text en © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Short Communications Alberts, Ben M. Sacre, Sandra M. Bush, Peter G. Mullen, Lisa M. Engineering of TIMP‐3 as a LAP‐fusion protein for targeting to sites of inflammation |
title | Engineering of TIMP‐3 as a LAP‐fusion protein for targeting to sites of inflammation |
title_full | Engineering of TIMP‐3 as a LAP‐fusion protein for targeting to sites of inflammation |
title_fullStr | Engineering of TIMP‐3 as a LAP‐fusion protein for targeting to sites of inflammation |
title_full_unstemmed | Engineering of TIMP‐3 as a LAP‐fusion protein for targeting to sites of inflammation |
title_short | Engineering of TIMP‐3 as a LAP‐fusion protein for targeting to sites of inflammation |
title_sort | engineering of timp‐3 as a lap‐fusion protein for targeting to sites of inflammation |
topic | Short Communications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349231/ https://www.ncbi.nlm.nih.gov/pubmed/30450736 http://dx.doi.org/10.1111/jcmm.14019 |
work_keys_str_mv | AT albertsbenm engineeringoftimp3asalapfusionproteinfortargetingtositesofinflammation AT sacresandram engineeringoftimp3asalapfusionproteinfortargetingtositesofinflammation AT bushpeterg engineeringoftimp3asalapfusionproteinfortargetingtositesofinflammation AT mullenlisam engineeringoftimp3asalapfusionproteinfortargetingtositesofinflammation |