Cargando…
Machine Learning of Stem Cell Identities From Single-Cell Expression Data via Regulatory Network Archetypes
The molecular regulatory network underlying stem cell pluripotency has been intensively studied, and we now have a reliable ensemble model for the “average” pluripotent cell. However, evidence of significant cell-to-cell variability suggests that the activity of this network varies within individual...
Autores principales: | Stumpf, Patrick S., MacArthur, Ben D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349820/ https://www.ncbi.nlm.nih.gov/pubmed/30723489 http://dx.doi.org/10.3389/fgene.2019.00002 |
Ejemplares similares
-
Unravelling the instability of mutational signatures extraction via archetypal analysis
por: Pancotti, Corrado, et al.
Publicado: (2023) -
Theory of cell fate
por: Casey, Michael J., et al.
Publicado: (2019) -
Exploring the Genomic Patterns in Human and Mouse Cerebellums Via Single-Cell Sequencing and Machine Learning Method
por: Li, ZhanDong, et al.
Publicado: (2022) -
Editorial: Machine Learning and Mathematical Models for Single-Cell Data Analysis
por: Ou-Yang, Le, et al.
Publicado: (2022) -
Nanog Fluctuations in Embryonic Stem Cells Highlight the Problem of Measurement in Cell Biology
por: Smith, Rosanna C.G., et al.
Publicado: (2017)